This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318404 #39 Dec 12 2023 08:28:17 %S A318404 1,1,12,49,409,2596,18321,124177,854764,5849089,40115241,274888516, %T A318404 1884285217,12914634529,88519396044,606717892561,4158514347961, %U A318404 28502860300132,195361565985969,1339027949145649,9177834477168556,62905812346085281,431162854681140297 %N A318404 a(n) = F(n+1)^4 - 4*F(n-1)*F(n)^3, where F(n) = A000045(n), the n-th Fibonacci number. %C A318404 a(n) is the number of Markov equivalence classes whose skeleton is a spider graph with four legs, each of which contains n nodes of degree at most two. %C A318404 A001519 admits the related formula A001519(n) = F(n+1)^2 - 2*F(n-1)*F(n). %H A318404 Robert Israel, <a href="/A318404/b318404.txt">Table of n, a(n) for n = 0..1195</a> %H A318404 A. Radhakrishnan, L. Solus, and C. Uhler. <a href="https://arxiv.org/abs/1706.06091">Counting Markov equivalence classes for DAG models on trees</a>, arXiv:1706.06091 [math.CO], 2017; Discrete Applied Mathematics 244 (2018): 170-185. %H A318404 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,15,-15,-5,1). %F A318404 G.f.: (-1 + 4*x + 8*x^2 + 11*x^3 - 4*x^4)/(-1 + 5*x + 15*x^2 - 15*x^3 - 5*x^4 + x^5). - _Robert Israel_, Aug 26 2018 %p A318404 f:= gfun:-rectoproc({a(n+5)-5*a(n+4)-15*a(n+3)+15*a(n+2)+5*a(n+1)-a(n),a(0)=1,a(1)=1,a(2)=12,a(3)=49,a(4)=409},a(n),remember): %p A318404 map(f, [$0..30]); # _Robert Israel_, Aug 26 2018 %t A318404 Table[Fibonacci[n + 1]^4 - 4 Fibonacci[n - 1] Fibonacci[n]^3, {n, 0, 25}] (* _Vincenzo Librandi_, Aug 26 2018 *) %t A318404 CoefficientList[Series[(-1 + 4 x + 8 x^2 + 11 x^3 - 4 x^4)/(-1 + 5 x + 15 x^2 - 15 x^3 - 5 x^4 + x^5), {x, 0, 50}], x] (* _Stefano Spezia_, Sep 03 2018 *) %o A318404 (SageMath) %o A318404 def a(n): %o A318404 return fibonacci(n+1)^4-4*fibonacci(n-1)*fibonacci(n)^3 %o A318404 [a(n) for n in range(20)] %o A318404 (Magma) [Fibonacci(n+1)^4-4*Fibonacci(n-1)*Fibonacci(n)^3: n in [0..25]]; // _Vincenzo Librandi_, Aug 26 2018 %o A318404 (PARI) a(n) = fibonacci(n+1)^4 - 4*fibonacci(n-1)*fibonacci(n)^3; \\ _Michel Marcus_, Aug 26 2018 %Y A318404 Cf. A000045, A001519, A318376. %K A318404 nonn,easy %O A318404 0,3 %A A318404 _Liam Solus_, Aug 26 2018 %E A318404 a(0) = 1 prepended by _Vincenzo Librandi_, Aug 26 2018