This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318406 #28 Dec 25 2022 12:15:57 %S A318406 0,1,1,2,3,7,10,22,32,70,102,222,324,704,1028,2232,3260,7076,10336, %T A318406 22432,32768,71112,103880,225432,329312,714640,1043952,2265472, %U A318406 3309424,7181744,10491168,22766752,33257920,72172576,105430496,228793312,334223808,725294592,1059518400,2299246592,3358764992 %N A318406 For n > 4, a(n) = a(n-1) + a(n-2) if n is even and a(n) = 3*a(n-2) + a(n-4) - a(n-5) if n is odd; a(0) = 0, a(1) = 1, a(2) = 1, a(3) = 2, and a(4) = 3. %C A318406 a(n) is the number of Markov equivalence classes whose skeleton is the caterpillar graph on n nodes. See Corollary 4.4 in the paper by A. Radhakrishnan et al. below. %H A318406 Colin Barker, <a href="/A318406/b318406.txt">Table of n, a(n) for n = 0..1000</a> %H A318406 A. Radhakrishnan, L. Solus, and C. Uhler. <a href="https://arxiv.org/abs/1706.06091">Counting Markov equivalence classes for DAG models on trees</a>, arXiv:1706.06091 [math.CO], 2017; Discrete Applied Mathematics 244 (2018): 170-185. %H A318406 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,4,0,-2,0,-2). %F A318406 From _Colin Barker_, Sep 03 2018: (Start) %F A318406 G.f.: x*(1 - x)*(1 + x)*(1 + x - x^2) / (1 - 4*x^2 + 2*x^4 + 2*x^6). %F A318406 a(n) = 4*a(n-2) - 2*a(n-4) - 2*a(n-6) for n>5. %F A318406 (End) %t A318406 LinearRecurrence[{0, 4, 0, -2, 0, -2}, {0, 1, 1, 2, 3, 7}, 50] (* _Jean-François Alcover_, Sep 17 2018 *) %t A318406 nxt[{n_,a_,b_,c_,d_,e_}]:={n+1,b,c,d,e,If[OddQ[n],d+e,3d-a+b]}; NestList[nxt,{4,0,1,1,2,3},40][[All,2]] (* _Harvey P. Dale_, Dec 25 2022 *) %o A318406 (PARI) a(n) = if (n > 4, if (n%2, 3*a(n-2) + a(n-4) - a(n-5), a(n-1) + a(n-2)), if (n > 1, n-1, n)); \\ _Michel Marcus_, Sep 03 2018 %o A318406 (PARI) concat(0, Vec(x*(1 - x)*(1 + x)*(1 + x - x^2) / (1 - 4*x^2 + 2*x^4 + 2*x^6) + O(x^40))) \\ _Colin Barker_, Sep 03 2018 %Y A318406 Cf. A007984, A318407. %K A318406 nonn,easy %O A318406 0,4 %A A318406 _Liam Solus_, Aug 26 2018