This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318411 #40 Sep 02 2018 04:30:14 %S A318411 2,3,5,3,7,5,11,13,7,5,17,19,7,11,23,13,29,5,31,11,17,13,37,19,13,41, %T A318411 7,43,23,47,17,53,21,19,29,59,61,31,13,11,67,23,13,71,73,37,31,13,79, %U A318411 41,83,17,43,29,89,13,31,47,37,97,101,17,103,13,53,107,109,21,37,113,19 %N A318411 Least k (>1) such that m^k == m mod A005117(n) for 0 <= m <= A005117(n) - 1. %C A318411 This sequence is different from A073482. %H A318411 Seiichi Manyama, <a href="/A318411/b318411.txt">Table of n, a(n) for n = 2..10000</a> %e A318411 A005117(5) = 6. %e A318411 0^3 = 0 == 0 mod 6, %e A318411 1^3 = 1 == 1 mod 6, %e A318411 2^3 = 8 == 2 mod 6, %e A318411 3^3 = 27 == 3 mod 6, %e A318411 4^3 = 64 == 4 mod 6, %e A318411 5^3 = 125 == 5 mod 6. %e A318411 ------------------------------------------------ %e A318411 A005117(23) = 35. %e A318411 0^13 = 0 == 0 mod 35, %e A318411 1^13 = 1 == 1 mod 35, %e A318411 2^13 = 8192 == 2 mod 35, %e A318411 ... %e A318411 34^13 = 81138303245565435904 == 34 mod 35. %e A318411 ------------------------------------------------ %e A318411 ------+------------+------ %e A318411 n | A005117(n) | a(n) %e A318411 ------+------------+------ %e A318411 2 | 2 | 2 %e A318411 3 | 3 | 3 %e A318411 4 | 5 | 5 %e A318411 5 | 6 | 3 %e A318411 6 | 7 | 7 %e A318411 7 | 10 | 5 %e A318411 8 | 11 | 11 %e A318411 9 | 13 | 13 %e A318411 10 | 14 | 7 %e A318411 11 | 15 | 5 %e A318411 12 | 17 | 17 %e A318411 13 | 19 | 19 %e A318411 14 | 21 | 7 %e A318411 15 | 22 | 11 %e A318411 16 | 23 | 23 %e A318411 17 | 26 | 13 %e A318411 18 | 29 | 29 %e A318411 19 | 30 | 5 %e A318411 20 | 31 | 31 %e A318411 21 | 33 | 11 %e A318411 22 | 34 | 17 %e A318411 23 | 35 | 13 %Y A318411 Cf. A005117, A318572. %K A318411 nonn %O A318411 2,1 %A A318411 _Seiichi Manyama_, Aug 26 2018