This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318434 #18 Sep 29 2018 12:57:17 %S A318434 1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,3,1,1,1,1,1,1,1,1,2,1,2,1,1,2,1,2,1,1, %T A318434 1,2,1,1,1,2,1,1,1,1,1,1,1,3,2,1,1,1,1,1,1,1,1,1,1,1,1,1,2,4,1,1,1,1, %U A318434 1,2,1,1,1,1,1,1,1,1,1,1,3,1,1,2,1,1,1 %N A318434 Number of ways to split the integer partition with Heinz number n into consecutive subsequences with equal sums. %C A318434 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %e A318434 The a(3072) = 5 constant-sum split partitions: %e A318434 (21111111111) %e A318434 (21111)(111111) %e A318434 (211)(1111)(1111) %e A318434 (21)(111)(111)(111) %e A318434 (2)(11)(11)(11)(11)(11) %t A318434 comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}]; %t A318434 Table[Length[Select[comps[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],SameQ@@Total/@#&]],{n,100}] %Y A318434 Cf. A001970, A056239, A063834, A296150, A316223, A317545, A317546, A319002. %Y A318434 Cf. A316245, A317508, A317715, A318683, A318684, A319794. %K A318434 nonn %O A318434 1,4 %A A318434 _Gus Wiseman_, Sep 29 2018