cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318443 Numerators of the sequence whose Dirichlet convolution with itself yields A018804, Pillai's arithmetical function: Sum_{k=1..n} gcd(k, n).

This page as a plain text file.
%I A318443 #18 May 10 2025 04:08:25
%S A318443 1,3,5,23,9,15,13,91,59,27,21,115,25,39,45,1451,33,177,37,207,65,63,
%T A318443 45,455,179,75,353,299,57,135,61,5797,105,99,117,1357,73,111,125,819,
%U A318443 81,195,85,483,531,135,93,7255,363,537,165,575,105,1059,189,1183,185,171,117,1035,121,183,767,46355,225,315,133,759,225,351,141,5369
%N A318443 Numerators of the sequence whose Dirichlet convolution with itself yields A018804, Pillai's arithmetical function: Sum_{k=1..n} gcd(k, n).
%C A318443 Because A018804 gets only odd values on primes, A046644 gives the sequence of denominators. Because both of those sequences are multiplicative, this is also.
%H A318443 Antti Karttunen, <a href="/A318443/b318443.txt">Table of n, a(n) for n = 1..16384</a>
%H A318443 Vaclav Kotesovec, <a href="/A318443/a318443.jpg">Graph - the asymptotic ratio (10000 terms)</a>
%F A318443 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A018804(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%F A318443 Sum_{k=1..n} A318443(k) / A046644(k) ~ sqrt(3/2)*n^2/Pi. - _Vaclav Kotesovec_, May 10 2025
%t A318443 a18804[n_] := Sum[n EulerPhi[d]/d, {d, Divisors[n]}];
%t A318443 f[1] = 1; f[n_] := f[n] = 1/2 (a18804[n] - Sum[f[d] f[n/d], {d, Divisors[ n][[2 ;; -2]]}]);
%t A318443 a[n_] := f[n] // Numerator;
%t A318443 Array[a, 72] (* _Jean-François Alcover_, Sep 13 2018 *)
%o A318443 (PARI)
%o A318443 up_to = 16384;
%o A318443 A018804(n) = sumdiv(n, d, n*eulerphi(d)/d); \\ From A018804
%o A318443 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
%o A318443 v318443aux = DirSqrt(vector(up_to, n, A018804(n)));
%o A318443 A318443(n) = numerator(v318443aux[n]);
%o A318443 (PARI) for(n=1, 100, print1(numerator(direuler(p=2, n, (1-X)^(1/2)/(1-p*X))[n]), ", ")) \\ _Vaclav Kotesovec_, May 09 2025
%Y A318443 Cf. A018804, A046644 (denominators).
%Y A318443 Cf. also A318444.
%K A318443 nonn,frac,mult
%O A318443 1,2
%A A318443 _Antti Karttunen_ and _Andrew Howroyd_, Aug 29 2018