cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318454 Denominators of the sequence whose Dirichlet convolution with itself yields A001227, number of odd divisors of n.

This page as a plain text file.
%I A318454 #13 May 09 2025 10:49:30
%S A318454 1,2,1,8,1,2,1,16,1,2,1,8,1,2,1,128,1,2,1,8,1,2,1,16,1,2,1,8,1,2,1,
%T A318454 256,1,2,1,8,1,2,1,16,1,2,1,8,1,2,1,128,1,2,1,8,1,2,1,16,1,2,1,8,1,2,
%U A318454 1,1024,1,2,1,8,1,2,1,16,1,2,1,8,1,2,1,128,1,2,1,8,1,2,1,16,1,2,1,8,1,2,1,256,1,2,1,8,1,2,1,16,1
%N A318454 Denominators of the sequence whose Dirichlet convolution with itself yields A001227, number of odd divisors of n.
%C A318454 The sequence seems to give the denominators of several other similarly constructed "Dirichlet Square Roots".
%H A318454 Antti Karttunen, <a href="/A318454/b318454.txt">Table of n, a(n) for n = 1..16384</a>
%F A318454 a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A001227(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%F A318454 a(n) = 2^A318455(n).
%F A318454 Sum_{k=1..n} A318453(k) / a(k) ~ n/sqrt(2). - _Vaclav Kotesovec_, May 09 2025
%t A318454 f[1] = 1; f[n_] := f[n] = 1/2 (Sum[Mod[d, 2], {d, Divisors[n]}] - Sum[f[d] f[n/d], {d, Divisors[n][[2 ;; -2]]}]);
%t A318454 Table[f[n] // Denominator, {n, 1, 105}] (* _Jean-François Alcover_, Sep 13 2018 *)
%o A318454 (PARI)
%o A318454 up_to = 16384;
%o A318454 A001227(n) = numdiv(n>>valuation(n, 2)); \\ From A001227
%o A318454 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
%o A318454 v318453_54 = DirSqrt(vector(up_to, n, A001227(n)));
%o A318454 A318454(n) = denominator(v318453_54[n]);
%Y A318454 Cf. A001227.
%Y A318454 Cf. A318453 (numerators), A318455.
%K A318454 nonn,frac
%O A318454 1,2
%A A318454 _Antti Karttunen_ and _Andrew Howroyd_, Aug 29 2018