This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318469 #7 Aug 30 2018 22:42:27 %S A318469 1,2,2,3,2,4,2,5,3,4,2,6,2,4,4,10,2,6,2,6,4,4,2,10,3,4,5,6,2,8,2,7,4, %T A318469 4,4,9,2,4,4,10,2,8,2,6,6,4,2,20,3,6,4,6,2,10,4,10,4,4,2,12,2,4,6,14, %U A318469 4,8,2,6,4,8,2,15,2,4,6,6,4,8,2,20,10,4,2,12,4,4,4,10,2,12,4,6,4,4,4,14,2,6,6,9,2,8,2,10,8 %N A318469 Multiplicative with a(p^e) = A019565(A003714(e)). %H A318469 Antti Karttunen, <a href="/A318469/b318469.txt">Table of n, a(n) for n = 1..65537</a> %H A318469 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a> %F A318469 For all n >= 1, A001222(a(n)) = A318464(n). %o A318469 (PARI) %o A318469 A003714(n) = { my(s=0,w); while(n>2, w = A072649(n); s += 2^(w-1); n -= fibonacci(w+1)); (s+n); } %o A318469 A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649 %o A318469 A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565 %o A318469 A318469(n) = factorback(apply(e -> A019565(A003714(e)),factor(n)[,2])); %Y A318469 Cf. A003714, A019565, A072649, A318464, A318465. %Y A318469 Cf. also A293442, A293443, A300834, A318470. %K A318469 nonn,mult %O A318469 1,2 %A A318469 _Antti Karttunen_, Aug 30 2018