cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318478 Decimal digits such that for all k>=1, the number A(k) := Sum_{n = 0..k-1 } a(n)*10^n satisfies the congruence 1984^A(k) == A(k) (mod 10^k).

Original entry on oeis.org

6, 1, 6, 3, 0, 7, 8, 9, 3, 0, 7, 1, 4, 5, 9, 1, 2, 0, 3, 2, 9, 4, 8, 4, 0, 0, 1, 0, 9, 0, 4, 5, 1, 0, 2, 3, 9, 2, 0, 5, 0, 9, 4, 2, 6, 9, 0, 5, 3, 3, 8, 6, 2, 2, 8, 4, 6, 3, 8, 5, 1, 9, 2, 3, 7, 7, 8, 9, 0, 0, 2, 8, 3, 9, 2, 7, 0, 0, 1, 0, 7, 4, 9, 0, 3, 3, 5
Offset: 1

Views

Author

Marco Ripà, Aug 26 2018

Keywords

Comments

10-adic expansion of the iterated exponential 1984^^n for sufficiently large n (where c^^n denotes a tower of c's of height n). E.g., for n>=9, 1984^^n(mod 10^8) == 98703616.
1984^^n, for any n>=188, appears in M. Ripà's book "La strana coda della serie n^n^...^n", where the author took his birth year (1984), as a random base in order to prove some general properties about tetration, and calculating 1984^^n(mod 10^187) as a test for his paper-and-pencil procedure.

Examples

			1984^^1984 (mod 10^8) == 98703616.
Thus, 1984^^1984 = ...61630789307145912032948400109045102(...)7490335.
Consider the sequence 1984^^n: 1984, 1984^1984, 1984^(1984^1984), ... From 1984^^3 onwards, all terms end with the digits 16. This follows from Euler's generalization of Fermat's little theorem.
		

References

  • M. Gardner, Mathematical Games, Scientific American 237, 18 - 28 (1977).
  • M. Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, p. 78-79. ISBN 978-88-6178-789-6.
  • Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.

Crossrefs