This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318491 #17 Jan 14 2025 01:50:18 %S A318491 1,5,7,17,11,35,15,49,34,11,23,119,27,75,77,129,35,85,39,187,5,115,47, %T A318491 343,86,135,142,255,59,77,63,321,161,175,33,289,75,195,63,539,83,25, %U A318491 87,391,374,235,95,301,162,43,245,459,107,355,23,105,91,295,119,1309,123,315,170,769,297 %N A318491 a(n) is the numerator of Sum_{d|n} Sum_{j|d} 1/j. %H A318491 Robert Israel, <a href="/A318491/b318491.txt">Table of n, a(n) for n = 1..10000</a> %F A318491 Numerators of coefficients in expansion of Sum_{k>=1} sigma(k)*x^k/(k*(1 - x^k)), where sigma(k) = sum of divisors of k (A000203). %F A318491 Numerators of coefficients in expansion of -log(Product_{k>=1} (1 - x^k)^tau(k)), where tau(k) = number of divisors of k (A000005). %F A318491 a(n) = numerator of Sum_{d|n} sigma(d)/d. %F A318491 a(n) = numerator of (1/n)*Sum_{d|n} d*tau(d). %F A318491 If p is a prime, a(p) = 2*p + 1. %F A318491 Sum_{k=1..n} a(k)/A318492(k) ~ zeta(2) * n * (log(n) + 2*gamma - 1 + zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). - _Amiram Eldar_, Dec 25 2024 %e A318491 1, 5/2, 7/3, 17/4, 11/5, 35/6, 15/7, 49/8, 34/9, 11/2, 23/11, 119/12, 27/13, 75/14, 77/15, 129/16, ... %p A318491 f:= proc(n) local d; %p A318491 numer(add(numtheory:-sigma(d)/d, d = numtheory:-divisors(n))) end proc: %p A318491 map(f, [$1..65]); # _Robert Israel_, Jan 13 2025 %t A318491 Numerator[Table[Sum[DivisorSigma[-1, d], {d, Divisors[n]}], {n, 65}]] %t A318491 Numerator[Table[Sum[DivisorSigma[1, d]/d, {d, Divisors[n]}], {n, 65}]] %t A318491 Numerator[Table[Sum[d DivisorSigma[0, d], {d, Divisors[n]}]/n, {n, 65}]] %t A318491 nmax = 65; Rest[Numerator[CoefficientList[Series[Sum[DivisorSigma[1, k] x^k/(k (1 - x^k)), {k, 1, nmax}], {x, 0, nmax}], x]]] %t A318491 nmax = 65; Rest[Numerator[CoefficientList[Series[-Log[Product[(1 - x^k)^DivisorSigma[0, k], {k, 1, nmax}]], {x, 0, nmax}], x]]] %o A318491 (PARI) a(n) = numerator(sumdiv(n, d, sumdiv(d, j, 1/j))); \\ _Michel Marcus_, Aug 28 2018 %Y A318491 Cf. A000005, A000203, A006171, A007429, A017665, A017666, A060640, A318492 (denominators). %Y A318491 Cf. A001620, A013661, A306016. %K A318491 nonn,frac,look %O A318491 1,2 %A A318491 _Ilya Gutkovskiy_, Aug 27 2018