cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318497 Numerators of the sequence whose Dirichlet convolution with itself yields A061389, number of (1+phi)-divisors of n.

This page as a plain text file.
%I A318497 #10 Jul 29 2019 09:58:03
%S A318497 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,13,1,1,
%T A318497 1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-13,1,1,1,
%U A318497 1,1,1,1,1,1,1,1,1,1,1,1,3,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,13,1,1,1,1,1,1,1,1,1
%N A318497 Numerators of the sequence whose Dirichlet convolution with itself yields A061389, number of (1+phi)-divisors of n.
%C A318497 No zeros among the first 2^20 terms. This is most probably multiplicative, like A318498.
%H A318497 Antti Karttunen, <a href="/A318497/b318497.txt">Table of n, a(n) for n = 1..65537</a>
%F A318497 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A061389(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%o A318497 (PARI)
%o A318497 up_to = 65537;
%o A318497 A061389(n) = factorback(apply(e -> (1+eulerphi(e)),factor(n)[,2]));
%o A318497 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
%o A318497 v318497_98 = DirSqrt(vector(up_to, n, A061389(n)));
%o A318497 A318497(n) = numerator(v318497_98[n]);
%Y A318497 Cf. A061389, A318314 (denominators).
%K A318497 sign,frac
%O A318497 1,16
%A A318497 _Antti Karttunen_, Aug 30 2018