cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318498 Denominators of the sequence whose Dirichlet convolution with itself yields A061389, number of (1+phi)-divisors of n.

This page as a plain text file.
%I A318498 #8 Aug 30 2018 22:42:05
%S A318498 1,1,1,2,1,1,1,1,2,1,1,2,1,1,1,8,1,2,1,2,1,1,1,1,2,1,1,2,1,1,1,8,1,1,
%T A318498 1,4,1,1,1,1,1,1,1,2,2,1,1,8,2,2,1,2,1,1,1,1,1,1,1,2,1,1,2,16,1,1,1,2,
%U A318498 1,1,1,2,1,1,2,2,1,1,1,8,8,1,1,2,1,1,1,1,1,2,1,2,1,1,1,8,1,2,2,4,1,1,1,1,1
%N A318498 Denominators of the sequence whose Dirichlet convolution with itself yields A061389, number of (1+phi)-divisors of n.
%C A318498 The sequence seems to give the denominators of a few other similarly constructed rational valued sequences obtained as "Dirichlet Square Roots" (of possibly A092520 and A293443).
%H A318498 Antti Karttunen, <a href="/A318498/b318498.txt">Table of n, a(n) for n = 1..16384</a>
%F A318498 a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A061389(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%F A318498 a(n) = 2^A318499(n).
%o A318498 (PARI)
%o A318498 up_to = 65537;
%o A318498 A061389(n) = factorback(apply(e -> (1+eulerphi(e)),factor(n)[,2]));
%o A318498 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
%o A318498 v318497_98 = DirSqrt(vector(up_to, n, A061389(n)));
%o A318498 A318497(n) = numerator(v318497_98[n]);
%o A318498 A318498(n) = denominator(v318497_98[n]);
%Y A318498 Cf. A061389, A318497 (numerators), A318499.
%Y A318498 Cf. also A299150, A046644.
%K A318498 nonn,frac
%O A318498 1,4
%A A318498 _Antti Karttunen_, Aug 30 2018