A318531 Number of finite sets of set partitions of {1,...,n} such that any two have join {{1,...,n}}.
2, 4, 18, 450, 436270
Offset: 1
Examples
The a(3) = 18 sets of set partitions: 0 {{1,2,3}} {{1,3},{2}} {{1,2},{3}} {{1},{2,3}} {{1},{2},{3}} {{1,3},{2}} {{1,2,3}} {{1,2},{3}} {{1,2,3}} {{1,2},{3}} {{1,3},{2}} {{1},{2,3}} {{1,2,3}} {{1},{2,3}} {{1,3},{2}} {{1},{2,3}} {{1,2},{3}} {{1},{2},{3}} {{1,2,3}} {{1,2},{3}} {{1,3},{2}} {{1,2,3}} {{1},{2,3}} {{1,3},{2}} {{1,2,3}} {{1},{2,3}} {{1,2},{3}} {{1,2,3}} {{1},{2,3}} {{1,2},{3}} {{1,3},{2}} {{1},{2,3}} {{1,2},{3}} {{1,3},{2}} {{1,2,3}}
Crossrefs
Programs
-
Mathematica
stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; Table[Length[stableSets[sps[Range[n]],Length[csm[Union[#1,#2]]]>1&]],{n,4}]