cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318531 Number of finite sets of set partitions of {1,...,n} such that any two have join {{1,...,n}}.

Original entry on oeis.org

2, 4, 18, 450, 436270
Offset: 1

Views

Author

Gus Wiseman, Aug 28 2018

Keywords

Examples

			The a(3) = 18 sets of set partitions:
        0
    {{1,2,3}}
   {{1,3},{2}}
   {{1,2},{3}}
   {{1},{2,3}}
  {{1},{2},{3}}
   {{1,3},{2}}   {{1,2,3}}
   {{1,2},{3}}   {{1,2,3}}
   {{1,2},{3}}  {{1,3},{2}}
   {{1},{2,3}}   {{1,2,3}}
   {{1},{2,3}}  {{1,3},{2}}
   {{1},{2,3}}  {{1,2},{3}}
  {{1},{2},{3}}  {{1,2,3}}
   {{1,2},{3}}  {{1,3},{2}}   {{1,2,3}}
   {{1},{2,3}}  {{1,3},{2}}   {{1,2,3}}
   {{1},{2,3}}  {{1,2},{3}}   {{1,2,3}}
   {{1},{2,3}}  {{1,2},{3}}  {{1,3},{2}}
   {{1},{2,3}}  {{1,2},{3}}  {{1,3},{2}}  {{1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[stableSets[sps[Range[n]],Length[csm[Union[#1,#2]]]>1&]],{n,4}]