This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318555 #44 May 11 2024 09:13:23 %S A318555 6,15,66,91,435,561,703,946,1105,1729,1891,2465,2701,2821,2926,3367, %T A318555 5551,6601,8646,8695,8911,10585,11305,12403,13981,15051,15841,16471, %U A318555 18721,23001,26335,29341,30889,38503,39865,41041,46657,49141,52633,53131,62745,63973,68101,75361,76627,76798,79003,88561,88831,91001 %N A318555 "Strong impostors" not divisible by 4: Those numbers s !== 0 (mod 4) such that lambda(s) | 2(s-1), where lambda is the Carmichael function (A002322). %C A318555 Strong impostors not == 0 (mod 4) have the property that, even though they are composite, when paired with any odd prime r such that (s,r) = 1, they produce valid RSA key pairs. More specifically, if n=sr, all a in Z_n will be correctly encrypted and decrypted for any (e,d) key pair such that ed == 1 mod (s-1)(r-1). They include the Carmichael numbers and are squarefree. The set of their odd prime factors is always normal: If p_i and p_j are odd prime factors, no p_i == 1 mod p_j. %H A318555 Amiram Eldar, <a href="/A318555/b318555.txt">Table of n, a(n) for n = 1..8000</a> (terms 1..2773 from Barry Fagin) %H A318555 D. Borwein, J. M. Borwein, P. B. Borwein and R. Girgensohn, <a href="http://www.jstor.org/stable/2975213">Giuga's Conjecture on Primality</a>, Amer. Math. Monthly 103, No. 1, 40-50 (1996). %H A318555 B. S. Fagin, <a href="https://doi.org/10.3390/info9090216">Composite Numbers That Give Valid RSA Key Pairs For Any Coprime p</a>, Information, 9, 216; doi:10.3390/info9090216. %H A318555 J. M. Grau and Antonio Oller-Marcén, <a href="https://arxiv.org/abs/1103.3483">Generalizing Giuga's conjecture</a>, arXiv:1103.3483 [math.NT], 2011. %t A318555 Reap[For[s = 1, s < 10^5, s++, If[!Divisible[s, 4] && CompositeQ[s], If[ Divisible[2(s-1), CarmichaelLambda[s]], Print[s]; Sow[s]]]]][[2, 1]] (* _Jean-François Alcover_, Feb 18 2019 *) %o A318555 (Python with numbthy library) %o A318555 for s in range(min_s,max_s): %o A318555 if numbthy.is_prime(s): %o A318555 continue %o A318555 elif s % 4 == 0: %o A318555 continue %o A318555 elif (2*(s-1) % numbthy.carmichael_lambda(s) == 0): %o A318555 print("s =",s) %o A318555 (PARI) isok(s) = s>1 && s%4>0 && !isprime(s) && (2*s-2)%lcm(znstar(s)[2])==0; \\ _Jinyuan Wang_, Mar 01 2020 %Y A318555 Cf. A002997 (Carmichael numbers), A005117 (squarefree numbers). %Y A318555 Subsequence of A231569. %K A318555 nonn %O A318555 1,1 %A A318555 _Barry Fagin_, Aug 28 2018