cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318559 Number of combinatory separations of the multiset of prime factors of n.

This page as a plain text file.
%I A318559 #7 Aug 29 2018 16:49:38
%S A318559 1,1,1,2,1,2,1,3,2,2,1,4,1,2,2,5,1,4,1,4,2,2,1,7,2,2,3,4,1,3,1,7,2,2,
%T A318559 2,8,1,2,2,7,1,3,1,4,4,2,1,12,2,4,2,4,1,7,2,7,2,2,1,8,1,2,4,11,2,3,1,
%U A318559 4,2,3,1,15,1,2,4,4,2,3,1,12,5,2,1,8,2,2
%N A318559 Number of combinatory separations of the multiset of prime factors of n.
%C A318559 A multiset is normal if it spans an initial interval of positive integers. The type of a multiset is the unique normal multiset that has the same sequence of multiplicities when its entries are taken in increasing order. For example the type of 335556 is 112223. A (headless) combinatory separation of a multiset m is a multiset of normal multisets {t_1,...,t_k} such that there exist multisets {s_1,...,s_k} with multiset union m and such that s_i has type t_i for each i = 1...k.
%e A318559 The a(60) = 8 combinatory separations of {2,2,3,5}:
%e A318559   {1123},
%e A318559   {1,112}, {1,123}, {11,12}, {12,12},
%e A318559   {1,1,11}, {1,1,12},
%e A318559   {1,1,1,1}.
%t A318559 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A318559 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A318559 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A318559 normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}];
%t A318559 Table[Length[Union[Sort/@Map[normize,mps[primeMS[n]],{2}]]],{n,100}]
%Y A318559 Cf. A007716, A056239, A112798, A255906, A265947, A269134, A317533, A317791.
%Y A318559 Cf. A318393, A318396, A318560, A318562, A318565, A318566, A318567.
%K A318559 nonn
%O A318559 1,4
%A A318559 _Gus Wiseman_, Aug 28 2018