This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318560 #8 Aug 29 2018 16:49:47 %S A318560 1,1,2,2,3,4,5,3,8,7,7,8,11,12,15,5,15,17,22,14,27,19,30,13,27,30,33, %T A318560 26,42,37,56,7,44,45,51,34,77,67,72,25 %N A318560 Number of combinatory separations of a multiset whose multiplicities are the prime indices of n in weakly decreasing order. %C A318560 A multiset is normal if it spans an initial interval of positive integers. The type of a multiset is the unique normal multiset that has the same sequence of multiplicities when its entries are taken in increasing order. For example the type of 335556 is 112223. A (headless) combinatory separation of a multiset m is a multiset of normal multisets {t_1,...,t_k} such that there exist multisets {s_1,...,s_k} with multiset union m and such that s_i has type t_i for each i = 1...k. %C A318560 The prime indices of n are the n-th row of A296150. %e A318560 The a(18) = 17 combinatory separations of {1,1,2,2,3}: %e A318560 {11223} %e A318560 {1,1122} {1,1123} {1,1223} {11,112} {12,112} {12,122} {12,123} %e A318560 {1,1,112} {1,1,122} {1,1,123} {1,11,11} {1,11,12} {1,12,12} %e A318560 {1,1,1,11} {1,1,1,12} %e A318560 {1,1,1,1,1} %t A318560 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A318560 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A318560 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A318560 normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}]; %t A318560 Table[Length[Union[Sort/@Map[normize,mps[nrmptn[n]],{2}]]],{n,20}] %Y A318560 Cf. A007716, A056239, A255906, A269134, A296150, A305936. %Y A318560 Cf. A317791, A318283, A318284, A318285, A318559, A318562, A318566, A318567. %K A318560 nonn,more %O A318560 1,3 %A A318560 _Gus Wiseman_, Aug 28 2018