This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318566 #8 Dec 30 2020 17:11:24 %S A318566 1,6,21,104,452,2335,11992,66810,385101,2336352,14738380,96831730, %T A318566 659809115,4657075074,33974259046,255781455848,1984239830571, %U A318566 15839628564349,129951186405574,1094486382191624,9453318070371926,83654146992936350,757769011659766015,7020652591448497490 %N A318566 Number of non-isomorphic multiset partitions of multiset partitions of multisets of size n. %e A318566 Non-isomorphic representatives of the a(3) = 21 multiset partitions of multiset partitions: %e A318566 {{{1,1,1}}} %e A318566 {{{1,1,2}}} %e A318566 {{{1,2,3}}} %e A318566 {{{1},{1,1}}} %e A318566 {{{1},{1,2}}} %e A318566 {{{1},{2,3}}} %e A318566 {{{2},{1,1}}} %e A318566 {{{1},{1},{1}}} %e A318566 {{{1},{1},{2}}} %e A318566 {{{1},{2},{3}}} %e A318566 {{{1}},{{1,1}}} %e A318566 {{{1}},{{1,2}}} %e A318566 {{{1}},{{2,3}}} %e A318566 {{{2}},{{1,1}}} %e A318566 {{{1}},{{1},{1}}} %e A318566 {{{1}},{{1},{2}}} %e A318566 {{{1}},{{2},{3}}} %e A318566 {{{2}},{{1},{1}}} %e A318566 {{{1}},{{1}},{{1}}} %e A318566 {{{1}},{{1}},{{2}}} %e A318566 {{{1}},{{2}},{{3}}} %t A318566 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A318566 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A318566 strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; %t A318566 dubnorm[m_]:=First[Union[Table[Map[Sort,m/.Rule@@@Table[{Union[Flatten[m]][[i]],Union[Flatten[m]][[perm[[i]]]]},{i,Length[perm]}],{0,2}],{perm,Permutations[Union[Flatten[m]]]}]]]; %t A318566 Table[Length[Union[dubnorm/@Join@@mps/@Join@@mps/@strnorm[n]]],{n,5}] %o A318566 (PARI) \\ See links in A339645 for combinatorial species functions. %o A318566 seq(n)={my(A=sExp(symGroupSeries(n))); NumUnlabeledObjsSeq(sCartProd(A, sExp(A)-1))} \\ _Andrew Howroyd_, Dec 30 2020 %Y A318566 Cf. A001970, A007716, A050336, A050338, A255906, A269134, A317533, A317791, A318564, A318565. %K A318566 nonn %O A318566 1,2 %A A318566 _Gus Wiseman_, Aug 29 2018 %E A318566 Terms a(8) and beyond from _Andrew Howroyd_, Dec 30 2020