A318567 Number of pairs (c, y) where c is an integer composition and y is an integer partition and y can be obtained from c by choosing a partition of each part, flattening, and sorting.
1, 3, 8, 21, 54, 137, 343, 847, 2075, 5031, 12109, 28921, 68633, 161865, 379655
Offset: 1
Examples
The a(3) = 8 combinatory separations: 111<={111} 111<={1,11} 111<={1,1,1} 112<={1,11} 112<={1,1,1} 122<={1,11} 122<={1,1,1} 123<={1,1,1}
Crossrefs
Programs
-
Mathematica
Table[Sum[Length[Union[Sort/@Join@@@Tuples[IntegerPartitions/@c]]],{c,Join@@Permutations/@IntegerPartitions[n]}],{n,30}]
Comments