This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318572 #51 Jan 03 2024 17:18:39 %S A318572 35,55,70,77,95,105,110,115,119,143,154,155,161,165,187,190,203,209, %T A318572 210,215,221,230,231,235,238,247,253,285,286,287,295,299,310,319,322, %U A318572 323,329,330,335,345,355,357,371,374,377,385,391,395,403,406,407,413,415,418,429,430 %N A318572 Squarefree numbers A005117(k) whose largest prime factor is not A318411(k). %H A318572 Seiichi Manyama, <a href="/A318572/b318572.txt">Table of n, a(n) for n = 1..5000</a> %e A318572 A005117(k) is the k-th squarefree number. %e A318572 A073482(k) is the largest prime factor of A005117(k). %e A318572 A073482(k) = A318411(k) for 2 <= k <= 22. %e A318572 -------+------------+------------+------------ %e A318572 k | A005117(k) | A073482(k) | A318411(k) %e A318572 -------+------------+------------+------------ %e A318572 23 | 35 | 7 | 13 %e A318572 34 | 55 | 11 | 21 %e A318572 44 | 70 | 7 | 13 %e A318572 48 | 77 | 11 | 31 %e A318572 60 | 95 | 19 | 37 %e A318572 65 | 105 | 7 | 13 %e A318572 69 | 110 | 11 | 21 %e A318572 73 | 115 | 23 | 45 %e A318572 75 | 119 | 17 | 49 %e A318572 89 | 143 | 13 | 61 %e A318572 94 | 154 | 11 | 31 %e A318572 95 | 155 | 31 | 61 %e A318572 99 | 161 | 23 | 67 %e A318572 101 | 165 | 11 | 21 %e A318572 115 | 187 | 17 | 81 %e A318572 116 | 190 | 19 | 37 %o A318572 (Ruby) %o A318572 require 'prime' %o A318572 def A(n) %o A318572 s = 1 %o A318572 flag = false %o A318572 while !flag %o A318572 s += 1 %o A318572 flag = true %o A318572 (1..n - 1).each{|i| %o A318572 if i != ((i ** s) % n) %o A318572 flag = false %o A318572 break %o A318572 end %o A318572 } %o A318572 end %o A318572 s %o A318572 end %o A318572 def A318572(n) %o A318572 ary = [] %o A318572 i = 2 %o A318572 while ary.size < n %o A318572 pq = i.prime_division %o A318572 if pq.all?{|j| j[1] == 1} %o A318572 ary << i if A(i) != pq[-1][0] %o A318572 end %o A318572 i += 1 %o A318572 end %o A318572 ary %o A318572 end %o A318572 p A318572(50) %Y A318572 Cf. A005117, A073482, A318411. %K A318572 nonn %O A318572 1,1 %A A318572 _Seiichi Manyama_, Aug 29 2018