cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318572 Squarefree numbers A005117(k) whose largest prime factor is not A318411(k).

This page as a plain text file.
%I A318572 #51 Jan 03 2024 17:18:39
%S A318572 35,55,70,77,95,105,110,115,119,143,154,155,161,165,187,190,203,209,
%T A318572 210,215,221,230,231,235,238,247,253,285,286,287,295,299,310,319,322,
%U A318572 323,329,330,335,345,355,357,371,374,377,385,391,395,403,406,407,413,415,418,429,430
%N A318572 Squarefree numbers A005117(k) whose largest prime factor is not A318411(k).
%H A318572 Seiichi Manyama, <a href="/A318572/b318572.txt">Table of n, a(n) for n = 1..5000</a>
%e A318572 A005117(k) is the k-th squarefree number.
%e A318572 A073482(k) is the largest prime factor of A005117(k).
%e A318572 A073482(k) = A318411(k) for 2 <= k <= 22.
%e A318572 -------+------------+------------+------------
%e A318572     k  | A005117(k) | A073482(k) | A318411(k)
%e A318572 -------+------------+------------+------------
%e A318572     23 |         35 |          7 |         13
%e A318572     34 |         55 |         11 |         21
%e A318572     44 |         70 |          7 |         13
%e A318572     48 |         77 |         11 |         31
%e A318572     60 |         95 |         19 |         37
%e A318572     65 |        105 |          7 |         13
%e A318572     69 |        110 |         11 |         21
%e A318572     73 |        115 |         23 |         45
%e A318572     75 |        119 |         17 |         49
%e A318572     89 |        143 |         13 |         61
%e A318572     94 |        154 |         11 |         31
%e A318572     95 |        155 |         31 |         61
%e A318572     99 |        161 |         23 |         67
%e A318572    101 |        165 |         11 |         21
%e A318572    115 |        187 |         17 |         81
%e A318572    116 |        190 |         19 |         37
%o A318572 (Ruby)
%o A318572 require 'prime'
%o A318572 def A(n)
%o A318572   s = 1
%o A318572   flag = false
%o A318572   while !flag
%o A318572     s += 1
%o A318572     flag = true
%o A318572     (1..n - 1).each{|i|
%o A318572       if i != ((i ** s) % n)
%o A318572         flag = false
%o A318572         break
%o A318572       end
%o A318572     }
%o A318572   end
%o A318572   s
%o A318572 end
%o A318572 def A318572(n)
%o A318572   ary = []
%o A318572   i = 2
%o A318572   while ary.size < n
%o A318572     pq = i.prime_division
%o A318572     if pq.all?{|j| j[1] == 1}
%o A318572       ary << i if A(i) != pq[-1][0]
%o A318572     end
%o A318572     i += 1
%o A318572   end
%o A318572   ary
%o A318572 end
%o A318572 p A318572(50)
%Y A318572 Cf. A005117, A073482, A318411.
%K A318572 nonn
%O A318572 1,1
%A A318572 _Seiichi Manyama_, Aug 29 2018