This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318573 #12 Nov 17 2019 09:31:28 %S A318573 0,1,1,2,1,3,1,3,1,4,1,5,1,5,5,4,1,2,1,7,3,6,1,7,2,7,3,9,1,11,1,5,7,8, %T A318573 7,3,1,9,2,10,1,7,1,11,4,10,1,9,1,5,9,13,1,5,8,13,5,11,1,17,1,12,5,6, %U A318573 1,17,1,15,11,19,1,4,1,13,7,17,9,5,1,13,2,14,1,11,10,15,3,16,1,7,5,19,13,16,11,11,1,3 %N A318573 Numerator of the reciprocal sum of the integer partition with Heinz number n. %C A318573 The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A318573 Antti Karttunen, <a href="/A318573/b318573.txt">Table of n, a(n) for n = 1..10000</a> %H A318573 Antti Karttunen, <a href="/A318573/a318573.txt">Data supplement: n, a(n) computed for n = 1..65537</a> %H A318573 Gus Wiseman, <a href="/A051908/a051908.txt">Sequences counting and ranking integer partitions by their reciprocal sums</a> %H A318573 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A318573 <a href="/index/He#Heinz">Index entries for sequences related to Heinz numbers</a> %F A318573 If n = Product prime(x_i)^y_i is the prime factorization of n, then a(n) is the numerator of Sum y_i/x_i. %t A318573 Table[Sum[pr[[2]]/PrimePi[pr[[1]]],{pr,If[n==1,{},FactorInteger[n]]}],{n,100}]//Numerator %o A318573 (PARI) A318573(n) = { my(f=factor(n)); numerator(sum(i=1,#f~,f[i, 2]/primepi(f[i, 1]))); }; \\ _Antti Karttunen_, Nov 17 2019 %Y A318573 Positions of 1's are A316857. %Y A318573 Cf. A051908, A056239, A058360, A112798, A289506, A289507, A296150, A316854, A316855, A316856, A318574, A325704. %K A318573 nonn,frac %O A318573 1,4 %A A318573 _Gus Wiseman_, Aug 29 2018 %E A318573 More terms from _Antti Karttunen_, Nov 17 2019