cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318573 Numerator of the reciprocal sum of the integer partition with Heinz number n.

This page as a plain text file.
%I A318573 #12 Nov 17 2019 09:31:28
%S A318573 0,1,1,2,1,3,1,3,1,4,1,5,1,5,5,4,1,2,1,7,3,6,1,7,2,7,3,9,1,11,1,5,7,8,
%T A318573 7,3,1,9,2,10,1,7,1,11,4,10,1,9,1,5,9,13,1,5,8,13,5,11,1,17,1,12,5,6,
%U A318573 1,17,1,15,11,19,1,4,1,13,7,17,9,5,1,13,2,14,1,11,10,15,3,16,1,7,5,19,13,16,11,11,1,3
%N A318573 Numerator of the reciprocal sum of the integer partition with Heinz number n.
%C A318573 The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%H A318573 Antti Karttunen, <a href="/A318573/b318573.txt">Table of n, a(n) for n = 1..10000</a>
%H A318573 Antti Karttunen, <a href="/A318573/a318573.txt">Data supplement: n, a(n) computed for n = 1..65537</a>
%H A318573 Gus Wiseman, <a href="/A051908/a051908.txt">Sequences counting and ranking integer partitions by their reciprocal sums</a>
%H A318573 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A318573 <a href="/index/He#Heinz">Index entries for sequences related to Heinz numbers</a>
%F A318573 If n = Product prime(x_i)^y_i is the prime factorization of n, then a(n) is the numerator of Sum y_i/x_i.
%t A318573 Table[Sum[pr[[2]]/PrimePi[pr[[1]]],{pr,If[n==1,{},FactorInteger[n]]}],{n,100}]//Numerator
%o A318573 (PARI) A318573(n) = { my(f=factor(n)); numerator(sum(i=1,#f~,f[i, 2]/primepi(f[i, 1]))); }; \\ _Antti Karttunen_, Nov 17 2019
%Y A318573 Positions of 1's are A316857.
%Y A318573 Cf. A051908, A056239, A058360, A112798, A289506, A289507, A296150, A316854, A316855, A316856, A318574, A325704.
%K A318573 nonn,frac
%O A318573 1,4
%A A318573 _Gus Wiseman_, Aug 29 2018
%E A318573 More terms from _Antti Karttunen_, Nov 17 2019