cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318574 Denominator of the reciprocal sum of the integer partition with Heinz number n.

This page as a plain text file.
%I A318574 #4 Aug 30 2018 08:37:03
%S A318574 1,1,2,1,3,2,4,1,1,3,5,2,6,4,6,1,7,1,8,3,4,5,9,2,3,6,2,4,10,6,11,1,10,
%T A318574 7,12,1,12,8,3,3,13,4,14,5,3,9,15,2,2,3,14,6,16,2,15,4,8,10,17,6,18,
%U A318574 11,4,1,2,10,19,7,18,12,20,1,21,12,6,8,20,3,22
%N A318574 Denominator of the reciprocal sum of the integer partition with Heinz number n.
%C A318574 The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%H A318574 Gus Wiseman, <a href="/A051908/a051908.txt">Sequences counting and ranking integer partitions by their reciprocal sums</a>
%F A318574 If n = Product prime(x_i)^y_i is the prime factorization of n, then a(n) is the denominator of Sum y_i/x_i.
%t A318574 Table[Sum[pr[[2]]/PrimePi[pr[[1]]],{pr,If[n==1,{},FactorInteger[n]]}],{n,100}]//Denominator
%Y A318574 Positions of 1's are A316856.
%Y A318574 Cf. A051908, A056239, A058360, A112798, A289506, A289507, A296150, A316854, A316855, A316857, A318573.
%K A318574 nonn,frac
%O A318574 1,3
%A A318574 _Gus Wiseman_, Aug 29 2018