cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318599 E.g.f. A(x) satisfies: A(x) = sin(x) + cos(x)*A(x)^2 with A(0)=1.

This page as a plain text file.
%I A318599 #16 Dec 14 2024 07:17:51
%S A318599 1,-1,-1,-11,-95,-1321,-22561,-474851,-11785535,-337650001,
%T A318599 -10962505921,-397804232891,-15954963362975,-700861670953081,
%U A318599 -33464274136282081,-1725656338796874131,-95578727098089100415,-5658893822397686566561,-356659432609686011399041,-23841281202421071709150571
%N A318599 E.g.f. A(x) satisfies: A(x) = sin(x) + cos(x)*A(x)^2 with A(0)=1.
%H A318599 Robert Israel, <a href="/A318599/b318599.txt">Table of n, a(n) for n = 0..368</a>
%F A318599 E.g.f.: A(x)=(1 + sqrt(1-2*sin(2*x)))/(2*cos(x)).
%F A318599 a(n) = A122045(n) - A318007(n) for n >= 1.
%p A318599 S:= series((1 + sqrt(1-2*sin(2*x)))/(2*cos(x)), x, 51):
%p A318599 seq(coeff(S,x,j)*j!,j=0..50);
%t A318599 m = 20; A[x_] = (1 + Sqrt[1 - 2 Sin[2x]] )/(2 Cos[x]); Range[0, m-1]! * CoefficientList[A[x] + O[x]^m, x] (* _Jean-François Alcover_, Apr 29 2019 *)
%Y A318599 Cf. A122045, A318007.
%K A318599 sign
%O A318599 0,4
%A A318599 _Robert Israel_, Aug 29 2018