This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318602 #9 Aug 30 2018 11:07:40 %S A318602 1,0,1,0,1,2,0,1,3,4,0,1,5,10,9,0,1,6,20,30,20,0,1,8,33,77,91,48,0,1, %T A318602 9,49,152,277,268,115,0,1,11,68,269,655,969,790,286,0,1,12,91,428, %U A318602 1330,2651,3294,2308,719,0,1,14,116,647,2420,6137,10300,10993,6737,1842 %N A318602 Triangle read by rows: T(n,k) is the number of rooted hypertrees on n unlabeled nodes with k edges, (0 <= k < n). %C A318602 Equivalently, the number of rooted connected graphs on n unlabeled nodes with k blocks where every block is a complete graph. %H A318602 Andrew Howroyd, <a href="/A318602/b318602.txt">Table of n, a(n) for n = 1..1275</a> %e A318602 Triangle begins: %e A318602 1; %e A318602 0, 1; %e A318602 0, 1, 2; %e A318602 0, 1, 3, 4; %e A318602 0, 1, 5, 10, 9; %e A318602 0, 1, 6, 20, 30, 20; %e A318602 0, 1, 8, 33, 77, 91, 48; %e A318602 0, 1, 9, 49, 152, 277, 268, 115; %e A318602 0, 1, 11, 68, 269, 655, 969, 790, 286; %e A318602 ... %o A318602 (PARI) %o A318602 EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)} %o A318602 R(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerMT(y*EulerMT(v)))); [Vecrev(p) | p <- v]} %o A318602 { my(T=R(10));for(n=1, #T, print(T[n])) } %Y A318602 Rightmost diagonal is A000081 (rooted trees). %Y A318602 Row sums are A007563. %Y A318602 Cf. A318601. %K A318602 nonn,tabl %O A318602 1,6 %A A318602 _Andrew Howroyd_, Aug 29 2018