This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318607 #10 Aug 30 2018 11:07:34 %S A318607 1,1,1,1,2,2,1,3,6,4,1,4,12,16,9,1,5,20,42,46,20,1,6,30,86,145,128,48, %T A318607 1,7,42,153,353,483,364,115,1,8,56,248,729,1369,1592,1029,286,1,9,72, %U A318607 376,1345,3236,5150,5151,2930,719,1,10,90,541,2287,6728,13708,18792,16513,8344,1842 %N A318607 Triangle read by rows: T(n,k) is the number of sets of rooted hypertrees on a total of n unlabeled nodes with a total of k edges, (0 <= k < n). %C A318607 Equivalently, the number of sets of rooted connected graphs on a total of n unlabeled nodes with a total of k blocks where every block is a complete graph. %C A318607 Bivariate Euler transform of triangle A318602. %H A318607 Andrew Howroyd, <a href="/A318607/b318607.txt">Table of n, a(n) for n = 1..1275</a> %e A318607 Triangle begins: %e A318607 1; %e A318607 1, 1; %e A318607 1, 2, 2; %e A318607 1, 3, 6, 4; %e A318607 1, 4, 12, 16, 9; %e A318607 1, 5, 20, 42, 46, 20; %e A318607 1, 6, 30, 86, 145, 128, 48; %e A318607 1, 7, 42, 153, 353, 483, 364, 115; %e A318607 1, 8, 56, 248, 729, 1369, 1592, 1029, 286; %e A318607 ... %e A318607 Case n=3: There are 5 sets of rooted graph which are illustrated below (an x marks a root node). These have 0, 1, 1, 2, 2 blocks so row 3 is 1, 2, 2. %e A318607 x o o o o %e A318607 / / \ \ / %e A318607 x x x x x---o x---o x---o %o A318607 (PARI) \\ here EulerMT is Euler transform (bivariate version). %o A318607 EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)} %o A318607 A(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerMT(y*EulerMT(v)))); [Vecrev(p) | p <- EulerMT(v)]} %o A318607 { my(T=A(10)); for(n=1, #T, print(T[n])) } %Y A318607 Rightmost diagonal is A000081 (rooted trees). %Y A318607 Row sums are A035052. %Y A318607 Cf. A318601, A318602. %K A318607 nonn,tabl %O A318607 1,5 %A A318607 _Andrew Howroyd_, Aug 30 2018