This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318611 #19 May 19 2021 05:14:28 %S A318611 1,0,1,1,1,1,2,1,3,3,4,4,8,5,11,10,14,14,24,18,34,32,46,45,72,60,103, %T A318611 96,138,137,212,184,296,282,403,397,591,539,830,798,1125,1119,1624, %U A318611 1519,2253,2195,3067,3056,4341,4158,6004,5897,8145,8164,11397,11090 %N A318611 Number of series-reduced powerful rooted trees with n nodes. %C A318611 A series-reduced rooted tree is powerful if either it is a single node, or the branches of the root all appear with multiplicities greater than 1 and are themselves series-reduced powerful rooted trees. %H A318611 Alois P. Heinz, <a href="/A318611/b318611.txt">Table of n, a(n) for n = 1..8000</a> %e A318611 The a(13) = 8 series-reduced powerful rooted trees: %e A318611 ((oo)(oo)(oo)(oo)) %e A318611 ((ooo)(ooo)(ooo)) %e A318611 (ooo(oo)(oo)(oo)) %e A318611 ((ooooo)(ooooo)) %e A318611 (oo(oooo)(oooo)) %e A318611 (oooo(ooo)(ooo)) %e A318611 (oooooo(oo)(oo)) %e A318611 (oooooooooooo) %p A318611 h:= proc(n, k, t) option remember; `if`(k=0, binomial(n+t, t), %p A318611 `if`(n=0, 0, add(h(n-1, k-j, t+1), j=2..k))) %p A318611 end: %p A318611 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A318611 add(b(n-i*j, i-1)*h(a(i), j, 0), j=0..n/i))) %p A318611 end: %p A318611 a:= n-> `if`(n<2, n, b(n-1$2)): %p A318611 seq(a(n), n=1..60); # _Alois P. Heinz_, Aug 31 2018 %t A318611 purt[n_]:=purt[n]=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[purt/@ptn]],Min@@Length/@Split[#]>1&],{ptn,IntegerPartitions[n-1]}]]; %t A318611 Table[Length[purt[n]],{n,20}] %t A318611 (* Second program: *) %t A318611 h[n_, k_, t_] := h[n, k, t] = If[k == 0, Binomial[n + t, t], %t A318611 If[n == 0, 0, Sum[h[n - 1, k - j, t + 1], {j, 2, k}]]]; %t A318611 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, %t A318611 Sum[b[n - i*j, i - 1]*h[a[i], j, 0], {j, 0, n/i}]]]; %t A318611 a[n_] := If[n < 2, n, b[n - 1, n - 1]]; %t A318611 Array[a, 60] (* _Jean-François Alcover_, May 19 2021, after _Alois P. Heinz_ *) %Y A318611 Cf. A000081, A001190, A001678, A001694, A004111, A167865, A291636, A317102, A317705, A317707, A318612, A318691. %K A318611 nonn %O A318611 1,7 %A A318611 _Gus Wiseman_, Aug 30 2018 %E A318611 a(41)-a(56) from _Alois P. Heinz_, Aug 31 2018