A318612 Matula-Goebel numbers of powerful rooted trees.
1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 23, 25, 27, 31, 32, 36, 49, 53, 59, 64, 67, 72, 81, 83, 97, 100, 103, 108, 121, 125, 127, 128, 131, 144, 151, 196, 200, 216, 225, 227, 241, 243, 256, 277, 288, 289, 311, 324, 331, 343, 359, 361, 392, 400, 419, 431, 432
Offset: 1
Keywords
Examples
The sequence of all powerful rooted trees together with their Matula-Goebel numbers begins: 1: o 2: (o) 3: ((o)) 4: (oo) 5: (((o))) 7: ((oo)) 8: (ooo) 9: ((o)(o)) 11: ((((o)))) 16: (oooo) 17: (((oo))) 19: ((ooo)) 23: (((o)(o))) 25: (((o))((o))) 27: ((o)(o)(o)) 31: (((((o)))))
Crossrefs
Programs
-
Mathematica
powgoQ[n_]:=Or[n==1,If[PrimeQ[n],powgoQ[PrimePi[n]],And[Min@@FactorInteger[n][[All,2]]>1,And@@powgoQ/@PrimePi/@FactorInteger[n][[All,1]]]]]; Select[Range[1000],powgoQ]
Comments