cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318616 a(n) = n! * [x^n] (1 - x)^(n*x).

This page as a plain text file.
%I A318616 #5 Aug 31 2018 03:43:56
%S A318616 1,0,-4,-9,160,1350,-14904,-335160,1796096,125615448,204300000,
%T A318616 -64591072920,-735003528192,41673388751280,1113912529707264,
%U A318616 -30043364514345000,-1703374149711298560,17822402097051182400,2856178489894627203072,12394040043610922716800,-5255899207995216384000000
%N A318616 a(n) = n! * [x^n] (1 - x)^(n*x).
%F A318616 a(n) = n! * [x^n] exp(-n*x*Sum_{k>=1} x^k/k).
%F A318616 a(n) = n! * Sum_{k=0..n} (-1)^k*n^(n-k)*Stirling1(k,n-k)/k!.
%t A318616 Table[n! SeriesCoefficient[(1 - x)^(n x), {x, 0, n}], {n, 0, 20}]
%t A318616 Join[{1}, Table[n! Sum[(-1)^k n^(n - k) StirlingS1[k, n - k]/k!, {k, n}], {n, 20}]]
%Y A318616 Cf. A007114, A008275, A318615.
%K A318616 sign
%O A318616 0,3
%A A318616 _Ilya Gutkovskiy_, Aug 30 2018