cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318649 Numerators of the sequence whose Dirichlet convolution with itself yields squares, A000290.

This page as a plain text file.
%I A318649 #21 May 09 2025 08:59:54
%S A318649 1,2,9,6,25,9,49,20,243,25,121,27,169,49,225,70,289,243,361,75,441,
%T A318649 121,529,90,1875,169,3645,147,841,225,961,252,1089,289,1225,729,1369,
%U A318649 361,1521,250,1681,441,1849,363,6075,529,2209,315,7203,1875,2601,507,2809,3645,3025,490,3249,841,3481,675,3721,961,11907,924,4225,1089
%N A318649 Numerators of the sequence whose Dirichlet convolution with itself yields squares, A000290.
%H A318649 Antti Karttunen, <a href="/A318649/b318649.txt">Table of n, a(n) for n = 1..65537</a>
%H A318649 Vaclav Kotesovec, <a href="/A318649/a318649.jpg">Graph - the asymptotic ratio (10000 terms)</a>
%F A318649 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * ((n^2) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%F A318649 a(n) = n*A318512(n)*A299149(n)/A299150(n).
%F A318649 Sum_{k=1..n} A318649(k) / A318512(k) ~ n^3/(3*sqrt(Pi*log(n))) * (1 + (1 - 3*gamma/2) / (6*log(n))), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, May 09 2025
%o A318649 (PARI)
%o A318649 up_to = 65537;
%o A318649 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u};
%o A318649 v318649_aux = DirSqrt(vector(up_to, n, (n*n)));
%o A318649 A318649(n) = numerator(v318649_aux[n]);
%o A318649 (PARI) for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-p^2*X)^(1/2))[n]), ", ")) \\ _Vaclav Kotesovec_, May 09 2025
%Y A318649 Cf. A000290, A318512 (denominators).
%Y A318649 Cf. also A046643, A299149, A318511, A318651, A318654 (gives the positions of even terms), A318655 (the 2-adic valuation).
%K A318649 nonn,frac
%O A318649 1,2
%A A318649 _Antti Karttunen_, Aug 31 2018