This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318649 #21 May 09 2025 08:59:54 %S A318649 1,2,9,6,25,9,49,20,243,25,121,27,169,49,225,70,289,243,361,75,441, %T A318649 121,529,90,1875,169,3645,147,841,225,961,252,1089,289,1225,729,1369, %U A318649 361,1521,250,1681,441,1849,363,6075,529,2209,315,7203,1875,2601,507,2809,3645,3025,490,3249,841,3481,675,3721,961,11907,924,4225,1089 %N A318649 Numerators of the sequence whose Dirichlet convolution with itself yields squares, A000290. %H A318649 Antti Karttunen, <a href="/A318649/b318649.txt">Table of n, a(n) for n = 1..65537</a> %H A318649 Vaclav Kotesovec, <a href="/A318649/a318649.jpg">Graph - the asymptotic ratio (10000 terms)</a> %F A318649 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * ((n^2) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1. %F A318649 a(n) = n*A318512(n)*A299149(n)/A299150(n). %F A318649 Sum_{k=1..n} A318649(k) / A318512(k) ~ n^3/(3*sqrt(Pi*log(n))) * (1 + (1 - 3*gamma/2) / (6*log(n))), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, May 09 2025 %o A318649 (PARI) %o A318649 up_to = 65537; %o A318649 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; %o A318649 v318649_aux = DirSqrt(vector(up_to, n, (n*n))); %o A318649 A318649(n) = numerator(v318649_aux[n]); %o A318649 (PARI) for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-p^2*X)^(1/2))[n]), ", ")) \\ _Vaclav Kotesovec_, May 09 2025 %Y A318649 Cf. A000290, A318512 (denominators). %Y A318649 Cf. also A046643, A299149, A318511, A318651, A318654 (gives the positions of even terms), A318655 (the 2-adic valuation). %K A318649 nonn,frac %O A318649 1,2 %A A318649 _Antti Karttunen_, Aug 31 2018