cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318650 Numerators of the sequence whose Dirichlet convolution with itself yields A057521, the powerful part of n.

This page as a plain text file.
%I A318650 #18 May 11 2025 04:56:45
%S A318650 1,1,1,15,1,1,1,49,35,1,1,15,1,1,1,603,1,35,1,15,1,1,1,49,99,1,181,15,
%T A318650 1,1,1,2023,1,1,1,525,1,1,1,49,1,1,1,15,35,1,1,603,195,99,1,15,1,181,
%U A318650 1,49,1,1,1,15,1,1,35,14875,1,1,1,15,1,1,1,1715,1,1,99,15,1,1,1,603,3235,1,1,15,1,1,1,49,1,35,1,15,1,1,1,2023,1
%N A318650 Numerators of the sequence whose Dirichlet convolution with itself yields A057521, the powerful part of n.
%C A318650 Multiplicative because A046644 and A057521 are.
%H A318650 Antti Karttunen, <a href="/A318650/b318650.txt">Table of n, a(n) for n = 1..65537</a>
%H A318650 Vaclav Kotesovec, <a href="/A318650/a318650_1.jpg">Graph - the asymptotic ratio (10^8 terms)</a>
%F A318650 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A057521(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%F A318650 From _Vaclav Kotesovec_, May 10 2025, simplified May 11 2025: (Start)
%F A318650 Let f(s) = Product_{p prime} (1 - 1/p^(3*s-2) + 1/p^(3*s-3) + 1/p^s).
%F A318650 Sum_{k=1..n} A318650(k) / A046644(k) ~ n^(3/2) * sqrt(2*f(3/2)/(9*Pi*log(n))) * (1 + (2/3 - gamma - f'(3/2)/(2*f(3/2))) / (2*log(n))), where
%F A318650 f(3/2) = Product_{p prime} (1 + 2/p^(3/2) - 1/p^(5/2)) = A328013 = 3.51955505841710664719752940369857817...
%F A318650 f'(3/2)/f(3/2) = Sum_{p prime} (4*p - 3) * log(p) / (1 - 2*p - p^(5/2)) = -3.90914718020692131140714384422938370058563543737256496...
%F A318650 and gamma is the Euler-Mascheroni constant A001620. (End)
%t A318650 ff[p_, e_] := If[e > 1, p^e, 1]; a[1] = 1; a[n_] := Times @@ ff @@@ FactorInteger[n]; f[1] = 1; f[n_] := f[n] = 1/2 (a[n] - Sum[f[d] f[n/d], {d, Divisors[n][[2 ;; -2]]}]); Table[Numerator[f[n]], {n, 1, 100}] (* _Vaclav Kotesovec_, May 11 2025 *)
%o A318650 (PARI)
%o A318650 up_to = 65537;
%o A318650 A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521
%o A318650 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u};
%o A318650 v318650_aux = DirSqrt(vector(up_to, n, A057521(n)));
%o A318650 A318650(n) = numerator(v318650_aux[n]);
%Y A318650 Cf. A057521, A046644 (denominators).
%Y A318650 Cf. also A317935, A318511, A318649.
%K A318650 nonn,frac,mult
%O A318650 1,4
%A A318650 _Antti Karttunen_, Aug 31 2018