cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318653 Numerators of the sequence whose Dirichlet convolution with itself yields A007947, the squarefree kernel of n.

This page as a plain text file.
%I A318653 #18 May 08 2025 13:45:49
%S A318653 1,1,3,1,5,3,7,1,3,5,11,3,13,7,15,3,17,3,19,5,21,11,23,3,-5,13,15,7,
%T A318653 29,15,31,3,33,17,35,3,37,19,39,5,41,21,43,11,15,23,47,9,-21,-5,51,13,
%U A318653 53,15,55,7,57,29,59,15,61,31,21,5,65,33,67,17,69,35,71,3,73,37,-15,19,77,39,79,15,3,41,83,21,85,43,87,11,89,15
%N A318653 Numerators of the sequence whose Dirichlet convolution with itself yields A007947, the squarefree kernel of n.
%C A318653 No zeros among the first 2^20 terms.
%H A318653 Antti Karttunen, <a href="/A318653/b318653.txt">Table of n, a(n) for n = 1..65537</a>
%H A318653 Vaclav Kotesovec, <a href="/A318653/a318653.jpg">Graph - the asymptotic ratio (100000 terms)</a>
%F A318653 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A007947(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%F A318653 From _Vaclav Kotesovec_, May 08 2025: (Start)
%F A318653 Let f(s) = Product_{p prime} (1 + 1/p^(2*s-1) - 1/p^(2*s-2) - 1/p^s).
%F A318653 Sum_{k=1..n} A318653(k)/A299150(k) ~ n^2 * sqrt(Pi*f(2)/(24*log(n))) * (1 - (gamma - 1 + f'(2)/f(2) + 6*zeta'(2)/Pi^2) / (4*log(n))), where
%F A318653 f(2) = A065464 = Product_{p prime} (1 - 2/p^2 + 1/p^3) = 0.4282495056770944402187657075818235461212985133559361440319...
%F A318653 f'(2) = f(2) * Sum_{p prime} (3*p-2)*log(p) / ((p-1)*(p^2+p-1)) = f(2) * 1.469536740824614833203393993450164364663334798759143895712...
%F A318653 and gamma is the Euler-Mascheroni constant A001620. (End)
%t A318653 rad[n_] := Times @@ (First@# & /@ FactorInteger[n]); f[1] = 1; f[n_] := f[n] = (rad[n] - DivisorSum[n, f[#]*f[n/#] &, 1 < # < n &])/2; a[n_] := Numerator [f[n]]; Array[a, 100] (* _Amiram Eldar_, Dec 07 2020 *)
%o A318653 (PARI)
%o A318653 up_to = 65537;
%o A318653 A007947(n) = factorback(factorint(n)[, 1]);
%o A318653 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u};
%o A318653 v318653_aux = DirSqrt(vector(up_to, n, A007947(n)));
%o A318653 A318653(n) = numerator(v318653_aux[n]);
%o A318653 for(n=1, 100, print1(numerator(direuler(p=2, n, ((1 + p*X - X)/(1 - X))^(1/2))[n]), ", ")) \\ _Vaclav Kotesovec_, May 08 2025
%Y A318653 Cf. A007947, A299150 (denominators).
%Y A318653 Cf. also A317935, A318511, A318512, A318649.
%K A318653 sign,frac,mult
%O A318653 1,3
%A A318653 _Antti Karttunen_, Aug 31 2018