cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318661 Numerators of the sequence whose Dirichlet convolution with itself yields A055653, sum of phi(d) over all unitary divisors d of n.

This page as a plain text file.
%I A318661 #12 May 10 2025 05:30:31
%S A318661 1,1,3,1,5,3,7,3,19,5,11,3,13,7,15,5,17,19,19,5,21,11,23,9,59,13,95,7,
%T A318661 29,15,31,9,33,17,35,19,37,19,39,15,41,21,43,11,95,23,47,15,123,59,51,
%U A318661 13,53,95,55,21,57,29,59,15,61,31,133,67,65,33,67,17,69,35,71,57,73,37,177,19,77,39,79,25,2019,41,83,21,85,43,87,33,89
%N A318661 Numerators of the sequence whose Dirichlet convolution with itself yields A055653, sum of phi(d) over all unitary divisors d of n.
%H A318661 Antti Karttunen, <a href="/A318661/b318661.txt">Table of n, a(n) for n = 1..65537</a>
%H A318661 Vaclav Kotesovec, <a href="/A318661/a318661.jpg">Graph - the asymptotic ratio (10000 terms)</a>
%F A318661 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A055653(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%F A318661 From _Vaclav Kotesovec_, May 10 2025: (Start)
%F A318661 Let f(s) = Product_{primes p} (1 + 1/p^(2*s) - 1/p^(2*s-1) - 1/p^s).
%F A318661 Sum_{k=1..n} A318661(k) / A318662(k) ~ n^2 * sqrt(Pi*f(2)/(24*log(n))) * (1 - ((gamma - 1)/2 + f'[2]/(2*f(2)) + 3*zeta'(2)/Pi^2) / (2*log(n))), where
%F A318661 f(2) = Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A330523 = 0.5358961538283379998085026313185459506482223745141452711510108346133288119...
%F A318661 f'(2)/f(2) = Sum_{primes p} (p^2 + 2*p - 2) * log(p) / (p^4 - p^2 - p + 1) = 0.8249574883141571786856463180997569604486048593127391054584235479395133668...
%F A318661 and gamma is the Euler-Mascheroni constant A001620. (End)
%o A318661 (PARI)
%o A318661 up_to = 1+(2^16);
%o A318661 A055653(n) = sumdiv(n, d, if(gcd(n/d, d)==1, eulerphi(d))); \\ From A055653
%o A318661 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u};
%o A318661 v318661_62 = DirSqrt(vector(up_to, n, A055653(n)));
%o A318661 A318661(n) = numerator(v318661_62[n]);
%o A318661 A318662(n) = denominator(v318661_62[n]);
%o A318661 A318663(n) = valuation(A318662(n),2);
%o A318661 (PARI) for(n=1, 100, print1(numerator(direuler(p=2, n, ((1 + X^2 - p*X^2 - X)/((1-X)*(1-p*X)))^(1/2))[n]), ", ")) \\ _Vaclav Kotesovec_, May 10 2025
%Y A318661 Cf. A055653, A318662 (denominators).
%K A318661 nonn,frac
%O A318661 1,3
%A A318661 _Antti Karttunen_, Sep 03 2018