cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318662 Denominators of the sequence whose Dirichlet convolution with itself yields A055653, sum of phi(d) over all unitary divisors d of n.

This page as a plain text file.
%I A318662 #10 May 10 2025 05:26:31
%S A318662 1,1,2,1,2,2,2,2,8,2,2,2,2,2,4,2,2,8,2,2,4,2,2,4,8,2,16,2,2,4,2,2,4,2,
%T A318662 4,8,2,2,4,4,2,4,2,2,16,2,2,4,8,8,4,2,2,16,4,4,4,2,2,4,2,2,16,8,4,4,2,
%U A318662 2,4,4,2,16,2,2,16,2,4,4,2,4,128,2,2,4,4,2,4,4,2,16,4,2,4,2,4,4,2,8,16,8,2,4,2,4,8
%N A318662 Denominators of the sequence whose Dirichlet convolution with itself yields A055653, sum of phi(d) over all unitary divisors d of n.
%C A318662 The sequence seems to give the denominators of several other similarly constructed "Dirichlet Square Roots".
%H A318662 Antti Karttunen, <a href="/A318662/b318662.txt">Table of n, a(n) for n = 1..16384</a>
%F A318662 a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A055653(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%o A318662 (PARI)
%o A318662 up_to = 1+(2^16);
%o A318662 A055653(n) = sumdiv(n, d, if(gcd(n/d, d)==1, eulerphi(d))); \\ From A055653
%o A318662 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u};
%o A318662 v318661_62 = DirSqrt(vector(up_to, n, A055653(n)));
%o A318662 A318661(n) = numerator(v318661_62[n]);
%o A318662 A318662(n) = denominator(v318661_62[n]);
%o A318662 A318663(n) = valuation(A318662(n),2);
%o A318662 (PARI) for(n=1, 100, print1(denominator(direuler(p=2, n, ((1 + X^2 - p*X^2 - X)/((1-X)*(1-p*X)))^(1/2))[n]), ", ")) \\ _Vaclav Kotesovec_, May 10 2025
%Y A318662 Cf. A055653, A318661 (numerators), A318663.
%Y A318662 Cf. also A046644, A299150, A317932, A317934, A318314.
%K A318662 nonn,frac
%O A318662 1,3
%A A318662 _Antti Karttunen_, Sep 03 2018