cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318664 Numerators of the sequence whose Dirichlet convolution with itself yields A064664, the inverse permutation of EKG-sequence.

This page as a plain text file.
%I A318664 #12 Sep 01 2018 22:28:19
%S A318664 1,1,5,1,5,-1,7,3,-1,-1,10,3,14,-1,-7,5,33,59,37,9,-10,-1,43,-1,-1,-1,
%T A318664 181,13,57,89,61,15,-29,-1,-45,31,67,-1,-41,1,37,129,81,11,301,-1,89,
%U A318664 21,1,26,-97,10,50,-93,-47,-5,-109,-1,107,-33,115,-1,411,15,-43,201,64,33,-127,56,67,181,69,-1,283,35,-31,255,151,7
%N A318664 Numerators of the sequence whose Dirichlet convolution with itself yields A064664, the inverse permutation of EKG-sequence.
%H A318664 Antti Karttunen, <a href="/A318664/b318664.txt">Table of n, a(n) for n = 1..16384</a>
%H A318664 <a href="/index/Ed#EKG">Index entries for sequences related to EKG sequence</a>
%F A318664 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A064664(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%F A318664 For n >= 2, a(2*A000040(n)) = -1.
%o A318664 (PARI)
%o A318664 v064413 = readvec("b064413_upto65539_terms_only.txt"); \\ From b-file of A064413 prepared beforehand.
%o A318664 A064413(n) = v064413[n];
%o A318664 m064664 = Map();
%o A318664 for(n=1,65539,mapput(m064664,A064413(n),n));
%o A318664 A064664(n) = mapget(m064664,n);
%o A318664 up_to = (2^14);
%o A318664 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
%o A318664 v318664_65 = DirSqrt(vector(up_to, n, A064664(n)));
%o A318664 A318664(n) = numerator(v318664_65[n]);
%o A318664 A318665(n) = denominator(v318664_65[n]);
%Y A318664 Cf. A064664, A304526, A304527, A305293, A305294, A318665 (denominators).
%Y A318664 Cf. also A317929, A317930.
%K A318664 sign,frac
%O A318664 1,3
%A A318664 _Antti Karttunen_, Sep 01 2018