cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318667 Numerators of the sequence whose Dirichlet convolution with itself yields A318307, which is multiplicative with A318307(p^e) = 2^A002487(e).

This page as a plain text file.
%I A318667 #6 Sep 03 2018 23:01:55
%S A318667 1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,-5,1,1,1,1,1,1,1,3,1,1,3,1,1,1,1,31,1,
%T A318667 1,1,1,1,1,1,3,1,1,1,1,1,1,1,-5,1,1,1,1,1,3,1,3,1,1,1,1,1,1,1,-43,1,1,
%U A318667 1,1,1,1,1,3,1,1,1,1,1,1,1,-5,-5,1,1,1,1,1,1,3,1,1,1,1,1,1,1,31,1,1,1,1,1,1,1,3,1
%N A318667 Numerators of the sequence whose Dirichlet convolution with itself yields A318307, which is multiplicative with A318307(p^e) = 2^A002487(e).
%C A318667 Multiplicative because A318307 and A317934 are.
%H A318667 Antti Karttunen, <a href="/A318667/b318667.txt">Table of n, a(n) for n = 1..65537</a>
%F A318667 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A318307(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%o A318667 (PARI)
%o A318667 up_to = 1+(2^16);
%o A318667 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u};
%o A318667 A002487(n) = { my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (b); }; \\ From A002487
%o A318667 A318307(n) = factorback(apply(e -> 2^A002487(e),factor(n)[,2]));
%o A318667 v318667_aux = DirSqrt(vector(up_to, n, A318307(n)));
%o A318667 A318667(n) = numerator(v318667_aux[n]);
%Y A318667 Cf. A318307, A317934 (denominators).
%K A318667 sign,frac,mult
%O A318667 1,8
%A A318667 _Antti Karttunen_, Sep 03 2018