This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318668 #8 Sep 12 2018 10:48:42 %S A318668 1,1,1,1,1,3,1,1,1,1,1,3,1,1,5,1,1,3,1,1,1,1,1,3,1,1,1,1,1,15,1,1,1,1, %T A318668 1,9,1,1,1,1,1,3,1,1,5,1,1,3,1,1,1,1,1,3,11,1,1,1,1,15,1,1,1,1,1,3,1, %U A318668 1,1,1,1,9,1,1,5,1,1,3,1,1,1,1,1,3,1,1,1,1,1,15,1,1,1,1,1,3,1,1,1,1,1,3,1,1,5 %N A318668 a(n) = gcd(n, A064988(n)). %C A318668 a(n) > 1 if and only if the prime factorization of n contains at least two distinct primes, p and q, such that q = prime(p). %H A318668 Antti Karttunen, <a href="/A318668/b318668.txt">Table of n, a(n) for n = 1..65537</a> %H A318668 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A318668 a(n) = gcd(n, A064988(n)). %o A318668 (PARI) A318668(n) = { my(f = factor(n)); for (k=1, #f~, f[k, 1] = prime(f[k, 1]); ); gcd(n,factorback(f)); }; \\ After code in A064988. %Y A318668 Cf. A064988, A318660. %K A318668 nonn %O A318668 1,6 %A A318668 _Antti Karttunen_, Sep 11 2018