cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318671 Numerators of the sequence whose Dirichlet convolution with itself yields A049599, number of (1+e)-divisors of n.

This page as a plain text file.
%I A318671 #6 Sep 03 2018 23:02:19
%S A318671 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,
%T A318671 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,11,1,1,1,1,
%U A318671 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-3
%N A318671 Numerators of the sequence whose Dirichlet convolution with itself yields A049599, number of (1+e)-divisors of n.
%H A318671 Antti Karttunen, <a href="/A318671/b318671.txt">Table of n, a(n) for n = 1..65537</a>
%F A318671 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A049599(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%o A318671 (PARI)
%o A318671 up_to = (2^16)+1;
%o A318671 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u};
%o A318671 A049599(n) = factorback(apply(e -> (1+numdiv(e)),factor(n)[,2]));
%o A318671 v318671_72 = DirSqrt(vector(up_to, n, A049599(n)));
%o A318671 A318671(n) = numerator(v318671_72[n]);
%Y A318671 Cf. A049599, A318672 (denominators).
%K A318671 sign,frac
%O A318671 1,64
%A A318671 _Antti Karttunen_, Sep 03 2018