This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318671 #6 Sep 03 2018 23:02:19 %S A318671 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1, %T A318671 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,11,1,1,1,1, %U A318671 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-3 %N A318671 Numerators of the sequence whose Dirichlet convolution with itself yields A049599, number of (1+e)-divisors of n. %H A318671 Antti Karttunen, <a href="/A318671/b318671.txt">Table of n, a(n) for n = 1..65537</a> %F A318671 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A049599(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1. %o A318671 (PARI) %o A318671 up_to = (2^16)+1; %o A318671 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; %o A318671 A049599(n) = factorback(apply(e -> (1+numdiv(e)),factor(n)[,2])); %o A318671 v318671_72 = DirSqrt(vector(up_to, n, A049599(n))); %o A318671 A318671(n) = numerator(v318671_72[n]); %Y A318671 Cf. A049599, A318672 (denominators). %K A318671 sign,frac %O A318671 1,64 %A A318671 _Antti Karttunen_, Sep 03 2018