cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318672 Denominators of the sequence whose Dirichlet convolution with itself yields A049599, number of (1+e)-divisors of n.

This page as a plain text file.
%I A318672 #6 Sep 03 2018 23:02:27
%S A318672 1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,1,1,1,
%T A318672 1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,8,1,1,1,1,
%U A318672 1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1
%N A318672 Denominators of the sequence whose Dirichlet convolution with itself yields A049599, number of (1+e)-divisors of n.
%C A318672 The sequence seems to give the denominators of a few other similarly constructed rational valued sequences obtained as "Dirichlet Square Roots" (possibly of A282446 and A318469).
%H A318672 Antti Karttunen, <a href="/A318672/b318672.txt">Table of n, a(n) for n = 1..16385</a>
%F A318672 a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A049599(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%F A318672 a(n) = 2^A318673(n).
%o A318672 (PARI)
%o A318672 up_to = (2^16)+1;
%o A318672 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u};
%o A318672 A049599(n) = factorback(apply(e -> (1+numdiv(e)),factor(n)[,2]));
%o A318672 v318671_62 = DirSqrt(vector(up_to, n, A049599(n)));
%o A318672 A318671(n) = numerator(v318671_62[n]);
%o A318672 A318672(n) = denominator(v318671_62[n]);
%o A318672 A318673(n) = valuation(A318672(n),2);
%Y A318672 Cf. A049599, A318671 (numerators), A318673.
%Y A318672 Cf. also A046644, A299150, A317932, A317934, A318498.
%K A318672 nonn,frac
%O A318672 1,8
%A A318672 _Antti Karttunen_, Sep 03 2018