A318684 Number of ways to split a strict integer partition of n into consecutive subsequences with strictly decreasing sums.
1, 1, 1, 3, 3, 5, 8, 11, 14, 20, 28, 35, 48, 61, 79, 105, 129, 162, 208, 257, 318, 404, 489, 600, 732, 896, 1075, 1315, 1576, 1895, 2272, 2715, 3217, 3851, 4537, 5377, 6353, 7484, 8765, 10314, 12044, 14079, 16420, 19114, 22184, 25818, 29840, 34528, 39903, 46030
Offset: 0
Keywords
Examples
The a(9) = 20 split partitions: (9) (81) (8)(1) (72) (7)(2) (63) (6)(3) (54) (5)(4) (432) (43)(2) (4)(3)(2) (621) (62)(1) (6)(2)(1) (6)(21) (531) (53)(1) (5)(3)(1) (5)(31)
Programs
-
Mathematica
comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}]; Table[Sum[Length[Select[comps[y],OrderedQ[Total/@#,Greater]&]],{y,Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,30}]