This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318689 #10 Dec 09 2020 15:39:30 %S A318689 1,1,2,3,5,6,11,12,19,23,35,36,63,64,98,112,173,174,291,292,473,509, %T A318689 791,792,1345,1356,2158,2257,3634,3635,6053,6054,9807,10091,16173, %U A318689 16216,26783,26784,43076,43880,70631,70632,114975,114976,184665,186996,298644,298645,481978,482011 %N A318689 Number of powerful uniform rooted trees with n nodes. %C A318689 A powerful uniform rooted tree with n nodes is either a single powerful uniform branch with n-1 nodes, or a powerful uniform multiset (all multiplicities are equal to the same number > 1) of powerful uniform rooted trees with a total of n-1 nodes. %H A318689 Andrew Howroyd, <a href="/A318689/b318689.txt">Table of n, a(n) for n = 1..1000</a> %H A318689 Gus Wiseman, <a href="/A318689/a318689.png">All 35 powerful uniform rooted trees with 11 nodes.</a> %e A318689 The a(8) = 12 powerful uniform rooted trees: %e A318689 (((((((o))))))) %e A318689 ((((((oo)))))) %e A318689 (((((o)(o))))) %e A318689 ((((o))((o)))) %e A318689 (((((ooo))))) %e A318689 (((o)(o)(o))) %e A318689 ((((oooo)))) %e A318689 (((oo)(oo))) %e A318689 ((oo(o)(o))) %e A318689 (((ooooo))) %e A318689 ((oooooo)) %e A318689 (ooooooo) %t A318689 rurt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[rurt/@ptn]],Or[Length[#]==1,And[Min@@Length/@Split[#]>=2,SameQ@@Length/@Split[#]]]&],{ptn,IntegerPartitions[n-1]}]]; %t A318689 Table[Length[rurt[n]],{n,15}] %o A318689 (PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} %o A318689 seq(n)={my(v=vector(n)); v[1]=1; for(n=1, n-1, my(u=WeighT(v[1..n])); v[n+1] = sumdiv(n,d,u[d]) - u[n] + v[n]); v} \\ _Andrew Howroyd_, Dec 09 2020 %Y A318689 Cf. A000081, A003238, A072774, A317705, A317707, A317710, A317717, A317718, A318611, A318612, A318690, A318691, A318692. %K A318689 nonn %O A318689 1,3 %A A318689 _Gus Wiseman_, Aug 31 2018 %E A318689 Terms a(21) and beyond from _Andrew Howroyd_, Dec 09 2020