This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318690 #8 Sep 02 2018 08:21:10 %S A318690 1,2,3,4,5,7,8,9,11,16,17,19,23,25,27,31,32,36,49,53,59,64,67,81,83, %T A318690 97,100,103,121,125,127,128,131,151,196,216,225,227,241,243,256,277, %U A318690 289,311,331,343,361,419,431,441,484,509,512,529,541,563,625,661,691 %N A318690 Matula-Goebel numbers of powerful uniform rooted trees. %C A318690 A prime index of n is a number m such that prime(m) divides n. A positive integer n is a Matula-Goebel number of a powerful uniform rooted tree iff either n = 1 or n is a prime number whose prime index is a Matula-Goebel number of a powerful uniform rooted tree or n is a squarefree number taken to a power > 1 whose prime indices are all Matula-Goebel numbers of powerful uniform rooted trees. %H A318690 Gus Wiseman, <a href="/A318690/a318690.png">The first 96 powerful uniform rooted trees.</a> %e A318690 The sequence of all powerful uniform rooted trees together with their Matula-Goebel numbers begins: %e A318690 1: o %e A318690 2: (o) %e A318690 3: ((o)) %e A318690 4: (oo) %e A318690 5: (((o))) %e A318690 7: ((oo)) %e A318690 8: (ooo) %e A318690 9: ((o)(o)) %e A318690 11: ((((o)))) %e A318690 16: (oooo) %e A318690 17: (((oo))) %e A318690 19: ((ooo)) %e A318690 23: (((o)(o))) %e A318690 25: (((o))((o))) %e A318690 27: ((o)(o)(o)) %e A318690 31: (((((o))))) %e A318690 32: (ooooo) %e A318690 36: (oo(o)(o)) %e A318690 49: ((oo)(oo)) %t A318690 powunQ[n_]:=Or[n==1,If[PrimeQ[n],powunQ[PrimePi[n]],And[SameQ@@FactorInteger[n][[All,2]],Min@@FactorInteger[n][[All,2]]>1,And@@powunQ/@PrimePi/@FactorInteger[n][[All,1]]]]]; %t A318690 Select[Range[100],powunQ] %Y A318690 Cf. A000081, A001694, A061775, A072774, A214577, A317705, A317707, A317710, A317717, A317719, A318611, A318612, A318689, A318692. %K A318690 nonn %O A318690 1,2 %A A318690 _Gus Wiseman_, Aug 31 2018