This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318691 #9 Dec 09 2020 15:40:29 %S A318691 1,0,1,1,1,1,2,1,3,2,3,1,6,1,5,4,8,1,11,1,15,6,13,1,26,3,24,9,36,1,50, %T A318691 1,58,14,67,7,107,1,105,25,160,1,213,1,245,45,291,1,443,5,492,68,644, %U A318691 1,851,15,1019,106,1263,1,1785,1,1986,189,2592,26,3426,1,4071,292 %N A318691 Number of series-reduced powerful uniform rooted trees with n nodes. %C A318691 A series-reduced powerful uniform rooted tree with n nodes is a powerful uniform multiset (all multiplicities are equal to the same number > 1) of series-reduced powerful uniform rooted trees with a total of n-1 nodes. %H A318691 Andrew Howroyd, <a href="/A318691/b318691.txt">Table of n, a(n) for n = 1..1000</a> %F A318691 a(p+1) = 1 for prime p. - _Andrew Howroyd_, Dec 09 2020 %e A318691 The a(19) = 11 series-reduced powerful uniform rooted trees with 19 nodes: %e A318691 (((ooo)(ooo))((ooo)(ooo))) %e A318691 ((oo(oo)(oo))(oo(oo)(oo))) %e A318691 ((oo)(oo)(oo)(oo)(oo)(oo)) %e A318691 ((oo)(oo)(ooooo)(ooooo)) %e A318691 ((ooo)(ooo)(oooo)(oooo)) %e A318691 (oo(oo)(oo)(oooo)(oooo)) %e A318691 ((ooooo)(ooooo)(ooooo)) %e A318691 (ooo(oooo)(oooo)(oooo)) %e A318691 ((oooooooo)(oooooooo)) %e A318691 (oo(ooooooo)(ooooooo)) %e A318691 (oooooooooooooooooo) %t A318691 rurt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[rurt/@ptn]],And[Min@@Length/@Split[#]>=2,SameQ@@Length/@Split[#]]&],{ptn,IntegerPartitions[n-1]}]]; %t A318691 Table[Length[rurt[n]],{n,10}] %o A318691 (PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} %o A318691 seq(n)={my(v=vector(n)); v[1]=1; for(n=1, n-1, my(u=WeighT(v[1..n])); v[n+1] = sumdiv(n,d,u[d]) - u[n]); v} \\ _Andrew Howroyd_, Dec 09 2020 %Y A318691 Cf. A000081, A001190, A001678, A001694, A003238, A072774, A317705, A317707, A317710, A318611, A318612, A318689, A318692. %K A318691 nonn %O A318691 1,7 %A A318691 _Gus Wiseman_, Aug 31 2018 %E A318691 Terms a(51) and beyond from _Andrew Howroyd_, Dec 09 2020