This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318693 #8 Jan 09 2019 09:16:04 %S A318693 1,1,4,16,100,628,5388,46212,491328,5381760,68023056,892073136, %T A318693 13238778144,201822014496,3397195558560,59356290115296, %U A318693 1121097742183296,21916440531679104,459855848691876096,9952944631606759680,229191463614349301760,5446997871156332605440,136439919208493792455680 %N A318693 Expansion of e.g.f. Product_{i>=1, j>=1} 1/(1 - x^(i*j)/(i*j)). %F A318693 E.g.f.: Product_{k>=1} 1/(1 - x^k/k)^tau(k), where tau = number of divisors (A000005). %F A318693 E.g.f.: exp(Sum_{k>=1} ( Sum_{d|k} d^(1-k/d)*tau(d) ) * x^k/k). %p A318693 seq(n!*coeff(series(mul(mul(1/(1-x^(i*j)/(i*j)),i=1..30),j=1..30),x=0,23),x,n),n=0..22); # _Paolo P. Lava_, Jan 09 2019 %t A318693 nmax = 22; CoefficientList[Series[Product[Product[1/(1 - x^(i j)/(i j)), {i, 1, nmax}], {j, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! %t A318693 nmax = 22; CoefficientList[Series[Product[1/(1 - x^k/k)^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! %t A318693 nmax = 22; CoefficientList[Series[Exp[Sum[Sum[d^(1 - k/d) DivisorSigma[0, d], {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]! %t A318693 a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^(1 - k/d) DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 22}] %Y A318693 Cf. A000005, A006171, A007841, A294469, A318415, A318694. %K A318693 nonn %O A318693 0,3 %A A318693 _Ilya Gutkovskiy_, Aug 31 2018