cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318697 Number of ways to partition a hypertree spanning n vertices into hypertrees.

This page as a plain text file.
%I A318697 #4 Sep 02 2018 08:21:32
%S A318697 1,1,7,93,1856,49753,1679441,68463769,3273695758,179710285011,
%T A318697 11141016392749,769939840667473,58695964339179805,4893452980658819151,
%U A318697 442915168219228586581,43255083632741702266097,4533695508041747494704359,507638249638364368312476913
%N A318697 Number of ways to partition a hypertree spanning n vertices into hypertrees.
%e A318697 The a(3) = 7 hypertree partitions:
%e A318697   {{{1,2,3}}}
%e A318697   {{{1,2},{1,3}}}
%e A318697   {{{1,2},{2,3}}}
%e A318697   {{{1,3},{2,3}}}
%e A318697   {{{1,2}},{{1,3}}}
%e A318697   {{{1,2}},{{2,3}}}
%e A318697   {{{1,3}},{{2,3}}}
%t A318697 trct[n_]:=Sum[StirlingS2[n-1,i]*n^(i-1),{i,0,n-1}];
%t A318697 numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];
%t A318697 Table[Sum[n^(Length[ptn]-1)*Product[trct[s+1],{s,ptn}]*numSetPtnsOfType[ptn],{ptn,IntegerPartitions[n-1]}],{n,20}]
%Y A318697 Cf. A000272, A030019, A048143, A134954, A275307, A317631, A317632, A317634, A317635, A317677.
%K A318697 nonn
%O A318697 1,3
%A A318697 _Gus Wiseman_, Aug 31 2018