cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318701 Tetrahedral numbers that are not divisible by any smaller tetrahedral number except 1.

This page as a plain text file.
%I A318701 #37 Dec 28 2018 13:32:04
%S A318701 1,4,10,35,165,286,969,1771,2925,3654,4495,9139,12341,16215,23426,
%T A318701 32509,39711,47905,52394,67525,79079,91881,105995,129766,138415,
%U A318701 156849,176851,209934,221815,246905,273819,302621,366145,383306,437989,477191,540274,562475,657359,708561,762355,848046,939929,1004731
%N A318701 Tetrahedral numbers that are not divisible by any smaller tetrahedral number except 1.
%H A318701 Robert Israel, <a href="/A318701/b318701.txt">Table of n, a(n) for n = 1..10000</a>
%e A318701 4 is a term because it is divisible by 1.
%e A318701 10 is a term because it is divisible by 1 but not by 4.
%p A318701 count:= 1: Res:= NULL:
%p A318701 for i from 2 while count < 100 do
%p A318701   r:= i*(i+1)*(i+2)/6;
%p A318701   if not ormap(t -> (r/t)::integer,[Res]) then
%p A318701     Res:= Res, r;
%p A318701     count:= count+1;
%p A318701   fi
%p A318701 od:
%p A318701 1,Res; # _Robert Israel_, Dec 28 2018
%t A318701 t[n_]:=n(n+1)(n+2)/6; tQ[n_] := Module[{ans=True, tn=t[n]}, Do[If[Divisible[tn,t[i]], ans=False; Break[]],{i,2,n-1}]; ans]; t[Select[Range[100], tQ]] (* _Amiram Eldar_, Nov 14 2018 *)
%o A318701 (PARI) t(n) = n*(n+1)*(n+2)/6;
%o A318701 isok(n) = my(tn=t(n)); for(i=2, n-1, if (!(tn % t(i)), return (0))); return (1);
%o A318701 lista(nn) = for (n=1, nn, if (isok(n), print1(t(n), ", "))); \\ _Michel Marcus_, Sep 29 2018
%Y A318701 Cf. A000292, A319788.
%K A318701 nonn
%O A318701 1,2
%A A318701 _Torlach Rush_, Aug 31 2018
%E A318701 a(1) = 1 inserted by _Michel Marcus_, Nov 09 2018