A318702 For any n >= 0 with binary expansion Sum_{k=0..w} b_k * 2^k, let f(n) = Sum_{k=0..w} b_k * i^k * 2^floor(k/2) (where i denotes the imaginary unit); a(n) is the real part of f(n).
0, 1, 0, 1, -2, -1, -2, -1, 0, 1, 0, 1, -2, -1, -2, -1, 4, 5, 4, 5, 2, 3, 2, 3, 4, 5, 4, 5, 2, 3, 2, 3, 0, 1, 0, 1, -2, -1, -2, -1, 0, 1, 0, 1, -2, -1, -2, -1, 4, 5, 4, 5, 2, 3, 2, 3, 4, 5, 4, 5, 2, 3, 2, 3, -8, -7, -8, -7, -10, -9, -10, -9, -8, -7, -8, -7
Offset: 0
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..16383
- Index entries for sequences related to binary expansion of n
- Rémy Sigrist, Colored scatterplot of (a(n), A318703(n)) for n = 0..2^19-1 (where the hue is function of n)
Programs
-
Mathematica
Array[Re[Total@ MapIndexed[#1*I^(First@ #2 - 1)*2^Floor[(First@ #2 - 1)/2] &, Reverse@ IntegerDigits[#, 2]]] &, 76, 0] (* Michael De Vlieger, Sep 02 2018 *)
-
PARI
a(n) = my (b=Vecrev(binary(n))); real(sum(k=1, #b, b[k] * I^(k-1) * 2^floor((k-1)/2)))
Comments