This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318711 #27 Feb 16 2025 08:33:56 %S A318711 1,720,7257600,15676416000,3476402012160000,3320318656512000000, %T A318711 4919915372473221120000000,4632289550697863577600000000, %U A318711 507464726196802564122476544000000000,173072180302909506079665684480000000000,49554442037561776763544469977956352000000000000 %N A318711 Denominator of the coefficient of z^(-2*n) in the Stirling-like asymptotic expansion of G(z+1), where G(z) is Barnes G-function. %C A318711 G(z+1) ~ A^(-1)*z^(-z^2/2-z/2-1/12)*exp(z^2/4)*(Gamma(z+1))^z*(Sum_{n>=0} b(n)/z^(2*n)), where A is the Glaisher-Kinkelin constant and Gamma is the gamma function. %C A318711 a(n) is the denominator of b(n). %H A318711 Seiichi Manyama, <a href="/A318711/b318711.txt">Table of n, a(n) for n = 0..149</a> %H A318711 Chao-Ping Chen, <a href="https://doi.org/10.1016/j.jnt.2013.08.007">Asymptotic expansions for Barnes G-function</a>, Journal of Number Theory 135 (2014) 36-42. %H A318711 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BarnesG-Function.html">Barnes G-Function</a> %F A318711 Let B_n be the Bernoulli number, and define the sequence {c_n} by the recurrence %F A318711 c_0 = 1, c_n = (1/(2*n)) * Sum_{k=0..n-1} B_{2*n-2*k+2}*c_k/((2*n-2*k+1)*(2*n-2*k+2)) for n > 0. %F A318711 a(n) is the denominator of c_n. %e A318711 G(z+1) ~ A^(-1)*z^(-z^2/2-z/2-1/12)*exp(z^2/4)*(Gamma(z+1))^z*(1 - 1/(720*z^2) + 1447/(7257600*z^4) - 1559527/(15676416000*z^6) + 366331136219/(3476402012160000*z^8) - 637231027521743/(3320318656512000000*z^10) + ... ). %Y A318711 Cf. A143476, A318710. %K A318711 nonn,frac %O A318711 0,2 %A A318711 _Seiichi Manyama_, Sep 01 2018