cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318722 Let f(0) = 0 and f(t*4^k + u) = i^t * ((1+i) * 2^k - f(u)) for any t in {1, 2, 3} and k >= 0 and u such that 0 <= u < 4^k (i denoting the imaginary unit); for any n >= 0, let g(n) = (f(A042968(n)) - 1 - i) / 2; a(n) is the real part of g(n).

Table of values

n a(n)
0 -1
1 -1
2 0
3 -1
4 -2
5 -2
6 -2
7 -2
8 -1
9 0
10 1
11 1
12 -2
13 -3
14 -3
15 -1
16 -1
17 -2
18 -3
19 -4
20 -4
21 -4
22 -4
23 -3
24 -3
25 -3
26 -2
27 -3
28 -4
29 -4
30 -4
31 -4
32 -3
33 -2
34 -1
35 -1
36 1
37 2
38 2
39 0
40 0
41 1
42 2
43 3
44 3
45 3
46 3
47 2
48 -4
49 -5
50 -5
51 -3
52 -3
53 -4
54 -5
55 -6
56 -6
57 -6
58 -6
59 -5
60 -2
61 -2
62 -3
63 -2
64 -1
65 -1
66 -1
67 -1
68 -2

List of values

[-1, -1, 0, -1, -2, -2, -2, -2, -1, 0, 1, 1, -2, -3, -3, -1, -1, -2, -3, -4, -4, -4, -4, -3, -3, -3, -2, -3, -4, -4, -4, -4, -3, -2, -1, -1, 1, 2, 2, 0, 0, 1, 2, 3, 3, 3, 3, 2, -4, -5, -5, -3, -3, -4, -5, -6, -6, -6, -6, -5, -2, -2, -3, -2, -1, -1, -1, -1, -2]