cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318750 a(n) = Sum_{k=1..n} k * tau_3(k), where tau_3 is A007425.

Original entry on oeis.org

1, 7, 16, 40, 55, 109, 130, 210, 264, 354, 387, 603, 642, 768, 903, 1143, 1194, 1518, 1575, 1935, 2124, 2322, 2391, 3111, 3261, 3495, 3765, 4269, 4356, 5166, 5259, 5931, 6228, 6534, 6849, 8145, 8256, 8598, 8949, 10149, 10272, 11406, 11535, 12327, 13137, 13551
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[n*Sum[DivisorSigma[0, d], {d, Divisors[n]}], {n, 1, 100}]]
    (* Asymptotics: *) n^2 * (Log[n]^2 + (6*EulerGamma - 1)*Log[n] + 6*EulerGamma^2 - 3*EulerGamma - 6*StieltjesGamma[1] + 1/2) / 4 (* Vaclav Kotesovec, Sep 09 2018 *)
  • PARI
    tau_3(k) = vecprod(apply(e -> (e+1)*(e+2)/2, factor(k)[, 2]));
    a(n) = sum(k = 1, n,  k * tau_3(k)); \\ Amiram Eldar, Jan 18 2025

Formula

a(n) = Sum_{k=1..n} A034718(k).
a(n) ~ n^2 * (log(n)^2 + (6*g-1)*log(n) + 6*g^2 - 3*g - 6*g1 + 1/2) / 4, where g is the Euler-Mascheroni constant A001620 and g1 is the first Stieltjes constant A082633. - Vaclav Kotesovec, Sep 09 2018