A318750 a(n) = Sum_{k=1..n} k * tau_3(k), where tau_3 is A007425.
1, 7, 16, 40, 55, 109, 130, 210, 264, 354, 387, 603, 642, 768, 903, 1143, 1194, 1518, 1575, 1935, 2124, 2322, 2391, 3111, 3261, 3495, 3765, 4269, 4356, 5166, 5259, 5931, 6228, 6534, 6849, 8145, 8256, 8598, 8949, 10149, 10272, 11406, 11535, 12327, 13137, 13551
Offset: 1
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..100000
- Vaclav Kotesovec, Graph - The asymptotic ratio (1000000 terms)
Programs
-
Mathematica
Accumulate[Table[n*Sum[DivisorSigma[0, d], {d, Divisors[n]}], {n, 1, 100}]] (* Asymptotics: *) n^2 * (Log[n]^2 + (6*EulerGamma - 1)*Log[n] + 6*EulerGamma^2 - 3*EulerGamma - 6*StieltjesGamma[1] + 1/2) / 4 (* Vaclav Kotesovec, Sep 09 2018 *)
-
PARI
tau_3(k) = vecprod(apply(e -> (e+1)*(e+2)/2, factor(k)[, 2])); a(n) = sum(k = 1, n, k * tau_3(k)); \\ Amiram Eldar, Jan 18 2025
Formula
a(n) = Sum_{k=1..n} A034718(k).
a(n) ~ n^2 * (log(n)^2 + (6*g-1)*log(n) + 6*g^2 - 3*g - 6*g1 + 1/2) / 4, where g is the Euler-Mascheroni constant A001620 and g1 is the first Stieltjes constant A082633. - Vaclav Kotesovec, Sep 09 2018