A318763 Numbers k such that neighboring digits of k^22 are distinct.
1, 2, 3, 5, 8, 26, 27, 41, 83, 2102, 6972, 7761, 8942, 20003, 59305, 75663, 123623, 185746, 254268, 394334, 10655255, 14778909, 93300158, 565765348, 768508444, 860579661, 1871501781, 2081745983, 5414493192, 6055361574, 14177422842, 19061134031, 36554529447
Offset: 1
Examples
a(3) = 3 is a member because 3^22 = 31381059609 has all its neighboring digits distinct. 4 is not a member because 4^22 = 17592186044416 contains 44.
Crossrefs
Cf. A090516.
Programs
-
Maple
filter:= proc(n) local L; L:= convert(n,base,10); not member(0, L[2..-1]-L[1..-2]) end proc: select(t -> filter(t^22), [$1..10^6]);
-
Mathematica
Select[Range[10^6], 0 != Times @@ Differences[IntegerDigits[#^22]] &] (* Giovanni Resta, Sep 03 2018 *)
Extensions
a(21)-a(26) from Robert Price, Sep 06 2018
a(27)-a(33) from Jon E. Schoenfield, Sep 10 2018
Comments