cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318764 Expansion of Product_{i>=1, j>=1, k>=1} ((1 + x^(i*j*k))/(1 - x^(i*j*k)))^(i*j*k).

Original entry on oeis.org

1, 2, 14, 44, 182, 548, 1932, 5632, 17654, 49872, 145020, 395256, 1090044, 2876424, 7606024, 19503312, 49850790, 124543772, 309436980, 755268832, 1831194724, 4376807896, 10387118328, 24359228520, 56720659372, 130737105940, 299256890672, 678941040784
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 03 2018

Keywords

Comments

Convolution of A318413 and A318414.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[Product[((1 + x^(i*j*k))/(1 - x^(i*j*k)))^(i*j*k), {i, 1, nmax/j/k}], {j, 1, nmax/k}], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k*Sum[DivisorSigma[0, d], {d, Divisors[k]}]), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

Conjecture: log(a(n)) ~ (21*Zeta(3))^(1/3) * log(n)^(2/3) * n^(2/3) / 2^(5/3).