This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318767 #24 Nov 05 2018 14:09:30 %S A318767 1,2,4,8,16,28,52,88,152,252,416,664,1076,1684,2636,4060,6248,9444, %T A318767 14292,21312,31748,46796,68804,100200,145784,210240,302520,432428, %U A318767 616716,873972,1236136,1738560,2439936,3407924,4749160,6589156,9123976,12582620,17316052,23745756 %N A318767 G.f. satisfies: A(x) = (1+x)/(1-x) * A(x^2)*A(x^3)*A(x^4)*...*A(x^n)*... . %C A318767 Convolution of A129373 and A129374. - _Vaclav Kotesovec_, Nov 05 2018 %H A318767 Vaclav Kotesovec, <a href="/A318767/b318767.txt">Table of n, a(n) for n = 0..10000</a> %F A318767 G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^A074206(k) where A074206(n) is the number of ordered factorizations of n. %F A318767 a(n) ~ exp((1+r) * ((2^(1+r) - 1) * Gamma(1+r) * Zeta(1+r))^(1/(1+r)) * n^(r/(1+r)) / (r * 2^(r/(1+r)) * (-Zeta'(r))^(1/(1+r)))) * (-2*(2^(1+r) - 1) * Gamma(1+r) * Zeta(1+r) / Zeta'(r))^(1/(10*(1+r))) / (2^(7/25) * Pi^(29/50) * sqrt(1+r) * n^((6+5*r)/(10*(1+r)))), where r = A107311 = 1.7286472389981836181351... is the root of the equation Zeta(r) = 2, Zeta'(r) = -1/A247667. - _Vaclav Kotesovec_, Nov 05 2018 %Y A318767 Cf. A074206, A129373, A129374. %K A318767 nonn %O A318767 0,2 %A A318767 _Seiichi Manyama_, Nov 04 2018